Rotational symmetry of self-similar solutions to the Ricci flow

被引:95
作者
Brendle, Simon [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
CURVATURE; SOLITONS; 3-MANIFOLDS; UNIQUENESS;
D O I
10.1007/s00222-013-0457-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M,g) be a three-dimensional steady gradient Ricci soliton which is non-flat and kappa-noncollapsed. We prove that (M,g) is isometric to the Bryant soliton up to scaling. This solves a problem mentioned in Perelman's first paper.
引用
收藏
页码:731 / 764
页数:34
相关论文
共 28 条
[1]   A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds [J].
Anderson, G ;
Chow, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2005, 23 (01) :1-12
[2]  
[Anonymous], 1996, 2 ORDER PARABOLIC DI, DOI DOI 10.1142/3302
[3]  
Brendle S., 2010, Graduate Studies in Mathematics, V111
[4]  
Bryant R.L., Ricci flow solitons in dimension three with SO(3)-symmetries
[5]  
CAO HD, ARXIV09082006
[6]   Bach-flat gradient steady Ricci solitons [J].
Cao, Huai-Dong ;
Catino, Giovanni ;
Chen, Qiang ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :125-138
[7]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[8]  
Chen BL, 2009, J DIFFER GEOM, V82, P363
[9]  
Chen X., ARXIV11020358
[10]   AREA GROWTH RATE OF THE LEVEL SURFACE OF THE POTENTIAL FUNCTION ON THE 3-DIMENSIONAL STEADY GRADIENT RICCI SOLITON [J].
Guo, Hongxin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (06) :2093-2097