Broadband High-Performance Infrared Antireflection Nanowires Facilely Grown on Ultrafast Laser Structured Cu Surface

被引:90
作者
Fan, Peixun [1 ,2 ]
Bai, Benfeng [2 ]
Long, Jiangyou [1 ]
Jiang, Dafa [1 ]
Jin, Guofan [2 ]
Zhang, Hongjun [1 ]
Zhong, Minlin [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, Laser Mat Proc Res Ctr, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instru, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal; nanowire; infrared; antireflection; ultrafast laser; structuring; SILICON SOLAR-CELLS; OPTICAL-PROPERTIES; CARBON NANOTUBES; LIGHT; ABSORPTION; ABSORBER; NANOSTRUCTURES; REFLECTION; ARRAYS; FOIL;
D O I
10.1021/acs.nanolett.5b02141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Infrared antireflection is an essential issue in many fields such as thermal imaging, sensors, thermoelectrics, and stealth. However, a limited antireflection capability, narrow effective band, and complexity as well as high cost in implementation represent the main unconquered problems, especially on metal surfaces. By introducing precursor micro/nano structures via ultrafast laser beforehand, we present a novel approach for facile and uniform growth of high-quality oxide semiconductor nanowires on a Cu surface via thermal oxidation. Through the enhanced optical phonon dissipation of the nanowires, assisted by light trapping in the micro structures, ultralow total reflectance of 0.6% is achieved at the infrared wavelength around 17 mu m and keeps steadily below 3% over a broad band of 14-18 mu m. The precursor structures and the nanowires can be flexibly tuned by controlling the laser processing procedure to achieve desired antireflection performance. The presented approach possesses the advantages of material simplicity, structure reconfigurability,, and cost-effectiveness for mass production. It opens a new path to realize unique functions by integrating semiconductor nanowires onto metal surface structures.
引用
收藏
页码:5988 / 5994
页数:7
相关论文
共 43 条
[1]  
[Anonymous], 1991, HDB OPTICAL CONSTANT
[2]  
[Anonymous], THESIS HARVARD U CAM
[3]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[5]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[6]   Utilization of geometric light trapping in thin film silicon solar cells: simulations and experiments [J].
de Jong, M. M. ;
Sonneveld, P. J. ;
Baggerman, J. ;
van Rijn, C. J. M. ;
Rath, J. K. ;
Schropp, R. E. I. .
PROGRESS IN PHOTOVOLTAICS, 2014, 22 (05) :540-547
[7]   Minimizing light reflection from dielectric textured surfaces [J].
Deinega, Alexei ;
Valuev, Ilya ;
Potapkin, Boris ;
Lozovik, Yurii .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (05) :770-777
[8]   Broad-band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods [J].
Diedenhofen, Silke L. ;
Vecchi, Gabriele ;
Algra, Rienk E. ;
Hartsuiker, Alex ;
Muskens, Otto L. ;
Immink, George ;
Bakkers, Erik P. A. M. ;
Vos, Willem L. ;
Rivas, Jaime Gomez .
ADVANCED MATERIALS, 2009, 21 (09) :973-+
[9]   Geometric light trapping for high efficiency thin film silicon solar cells [J].
Escarre, Jordi ;
Soederstroem, Karin ;
Despeisse, Matthieu ;
Nicolay, Sylvain ;
Battaglia, Corsin ;
Bugnon, Gregory ;
Ding, Laura ;
Meillaud, Fanny ;
Haug, Franz-Josef ;
Ballif, Christophe .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2012, 98 :185-190
[10]   Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures [J].
Huang, Yi-Fan ;
Chattopadhyay, Surojit ;
Jen, Yi-Jun ;
Peng, Cheng-Yu ;
Liu, Tze-An ;
Hsu, Yu-Kuei ;
Pan, Ci-Ling ;
Lo, Hung-Chun ;
Hsu, Chih-Hsun ;
Chang, Yuan-Huei ;
Lee, Chih-Shan ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
NATURE NANOTECHNOLOGY, 2007, 2 (12) :770-774