A necessary and sufficient condition for probability measures dominated by g-expectation

被引:5
作者
Jiang, Long [1 ,2 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221116, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国博士后科学基金;
关键词
STOCHASTIC DIFFERENTIAL-EQUATIONS; JENSENS INEQUALITY; EXISTENCE; RISK;
D O I
10.1016/j.spl.2008.07.037
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove that if the generator g of a g-expectation epsilon(g). is independent of y, then a probability measure Q is dominated by epsilon(g) if and only if Q can be generated by the Girsanov transformation via a controlled process; furthermore, we prove that epsilon(g) equals the supremum of its dominated mathematical expectations if and only if g is sublinear with respect to z. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 201
页数:6
相关论文
共 18 条
  • [1] [Anonymous], LECT NOTES MATH
  • [2] EXISTENCE OF OPTIMAL STOCHASTIC CONTROL LAWS
    BENES, VE
    [J]. SIAM JOURNAL ON CONTROL, 1971, 9 (03): : 446 - &
  • [3] EXISTENCE OF OPTIMAL STRATEGIES BASED ON SPECIFIED INFORMATION, FOR A CLASS OF STOCHASTIC DECISION PROBLEMS
    BENES, VE
    [J]. SIAM JOURNAL ON CONTROL, 1970, 8 (02): : 179 - &
  • [4] A CONVERSE COMPARISON THEOREM FOR BSDES AND RELATED PROPERTIES OF g-EXPECTATION
    Briand, Philippe
    Coquet, Francois
    Hu, Ying
    Memin, Jean
    Peng, Shige
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 : 101 - 117
  • [5] Choquet expectation and Peng's g-expectation
    Chen, ZJ
    Chen, T
    Davison, M
    [J]. ANNALS OF PROBABILITY, 2005, 33 (03) : 1179 - 1199
  • [6] Jensen's inequality for g-expectation:: part 1
    Chen, ZJ
    Kulperger, R
    Jiang, L
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (11) : 725 - 730
  • [7] Jensen's inequality for g-expectation, Part 2
    Chen, ZJ
    Kulperger, R
    Jiang, L
    [J]. COMPTES RENDUS MATHEMATIQUE, 2003, 337 (12) : 797 - 800
  • [8] Ambiguity, risk, and asset returns in continuous time
    Chen, ZJ
    Epstein, L
    [J]. ECONOMETRICA, 2002, 70 (04) : 1403 - 1443
  • [9] A property of backward stochastic differential equations
    Chen, ZJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04): : 483 - 488
  • [10] Filtration-consistent, nonlinear expectations and related g-expectations
    Coquet, F
    Hu, Y
    Mémin, J
    Peng, SG
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 123 (01) : 1 - 27