Generalized Composite Kernel Framework for Hyperspectral Image Classification

被引:432
作者
Li, Jun [1 ]
Marpu, Prashanth Reddy [2 ]
Plaza, Antonio [1 ]
Bioucas-Dias, Jose M. [3 ]
Benediktsson, Jon Atli [4 ]
机构
[1] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10071, Spain
[2] Masdar Inst Sci & Technol, Abu Dhabi 54224, U Arab Emirates
[3] Univ Tecn Lisboa, Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[4] Univ Iceland, Fac Elect & Comp Engn, IS-101 Reykjavik, Iceland
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2013年 / 51卷 / 09期
关键词
Extended multiattribute morphological profiles (MPs); generalized composite kernel; hyperspectral imaging; multinomial logistic regression (MLR); supervised classification; MULTINOMIAL LOGISTIC-REGRESSION; SPATIAL CLASSIFICATION; SEGMENTATION;
D O I
10.1109/TGRS.2012.2230268
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a new framework for the development of generalized composite kernel machines for hyperspectral image classification. We construct a new family of generalized composite kernels which exhibit great flexibility when combining the spectral and the spatial information contained in the hyperspectral data, without any weight parameters. The classifier adopted in this work is the multinomial logistic regression, and the spatial information is modeled from extended multiattribute profiles. In order to illustrate the good performance of the proposed framework, support vector machines are also used for evaluation purposes. Our experimental results with real hyperspectral images collected by the National Aeronautics and Space Administration Jet Propulsion Laboratory's Airborne Visible/Infrared Imaging Spectrometer and the Reflective Optics Spectrographic Imaging System indicate that the proposed framework leads to state-of-the-art classification performance in complex analysis scenarios.
引用
收藏
页码:4816 / 4829
页数:14
相关论文
共 35 条
[1]  
[Anonymous], 2004, P ACM C ACM LEARN AC
[2]  
[Anonymous], 2006, REMOTE SENSING DIGIT
[3]  
[Anonymous], 2003, WILEY HOBOKEN
[4]   Classification of hyperspectral data from urban areas based on extended morphological profiles [J].
Benediktsson, JA ;
Palmason, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03) :480-491
[5]  
Bioucas-Dias J., 2009, Logistic regression via variable splitting and augmented lagrangian tools
[6]   Hyperspectral subspace identification [J].
Bioucas-Dias, Jose M. ;
Nascimento, Jose M. P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08) :2435-2445
[7]   MULTINOMIAL LOGISTIC-REGRESSION ALGORITHM [J].
BOHNING, D .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1992, 44 (01) :197-200
[8]   Bayesian Hyperspectral Image Segmentation With Discriminative Class Learning [J].
Borges, Janete S. ;
Bioucas-Dias, Jose M. ;
Marcal, Andre R. S. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2151-2164
[9]   Attribute openings, thinnings, and granulometries [J].
Breen, EJ ;
Jones, R .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 64 (03) :377-389
[10]   A novel transductive SVM for semisupervised classification of remote-sensing images [J].
Bruzzone, Lorenzo ;
Chi, Mingmin ;
Marconcini, Mattia .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (11) :3363-3373