STABILITY RESULTS IN LEARNING THEORY

被引:38
作者
Rakhlin, Alexander [1 ]
Mukherjee, Sayan [2 ]
Poggio, Tomaso [1 ]
机构
[1] MIT, Ctr Biol & Computat Learning, Cambridge, MA 02139 USA
[2] Duke Univ, Inst Stat & Decis Sci, Inst Genome Sci & Policy, Durham, NC 27708 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Stability; generalization; estimators; empirical risk minimization;
D O I
10.1142/S0219530505000650
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of proving generalization bounds for the performance of learning algorithms can be formulated as a problem of bounding the bias and variance of estimators of the expected error. We show how various stability assumptions can be employed for this purpose. We provide a necessary and sufficient stability condition for bounding the bias and variance for the Empirical Risk Minimization algorithm, and various sufficient conditions for bounding bias and variance of estimators for general algorithms. We discuss settings in which it is possible to obtain exponential bounds, and we prove an extension of the bounded-difference inequality for "almost always" stable algorithms.
引用
收藏
页码:397 / 417
页数:21
相关论文
共 10 条
[1]   Moment inequalities for functions of independent random variables [J].
Boucheron, S ;
Bousquet, O ;
Lugosi, G ;
Massart, P .
ANNALS OF PROBABILITY, 2005, 33 (02) :514-560
[2]   Stability and generalization [J].
Bousquet, O ;
Elisseeff, A .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (03) :499-526
[3]  
Caponnetto A., 2005, 2005018 AI MIT
[4]  
Devroye L., 1996, APPL MATH, V31
[5]   DISTRIBUTION-FREE PERFORMANCE BOUNDS FOR POTENTIAL FUNCTION RULES [J].
DEVROYE, LP ;
WAGNER, TJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (05) :601-604
[6]  
KEARNS MJ, 1997, COMPUTATIONAL LEARNI, P152
[7]  
Kutin S., 2002, TR200303 U CHIC
[8]  
Kutin S, 2002, TR200204 U CHIC
[9]  
MCDIARMID C, 1989, LOND MATH S, V141, P148
[10]  
Mukherjee S., 2002, 2003023 CBCL MIT