On statistical exhaustiveness

被引:50
作者
Caserta, A. [2 ]
Kocinac, Lj. D. R. [1 ]
机构
[1] Univ Nis, Fac Sci & Math, Nish 18000, Serbia
[2] SUN, Dept Math, I-81100 Caserta, Italy
关键词
Statistical convergence; Bornology; (weak) exhaustiveness; Strong uniform convergence; CONVERGENCE;
D O I
10.1016/j.aml.2011.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study statistical versions of several types of convergence of sequences of functions between two metric spaces. Special attention is devoted to statistical versions of recently introduced notions of exhaustiveness (Gregoriades and Papanastassiou (2008) [41) and strong uniform convergence on a bornology (Beer and Levi (2009)131). We obtain a few results about the continuity of the statistical pointwise limit of a sequence of functions. (c) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1447 / 1451
页数:5
相关论文
共 15 条
  • [1] ALEXANDROFF PS, 1956, EINFUHRUNG MENGENLEH
  • [2] [Anonymous], 1949, J MATH PURE APPL
  • [3] [Anonymous], BORNOLOGIES FUNCTION
  • [4] Strong uniform continuity
    Beer, Gerald
    Levi, Sandro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (02) : 568 - 589
  • [5] CASERTA A, TOPOLOGY AP IN PRESS
  • [6] Arzela's Theorem and strong uniform convergence on bornologies
    Caserta, Agata
    Di Maio, Giuseppe
    Hola, Lubica
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) : 384 - 392
  • [7] Statistical convergence in topology
    Di Maio, Giuseppe
    Kocinac, Ljubisa D. R.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2008, 156 (01) : 28 - 45
  • [8] Engelking R., 1989, General topology
  • [9] FAST H., 1951, Colloq. Math., V2, P241
  • [10] Fridy JA, 1985, Analysis, V5, P301, DOI DOI 10.1524/ANLY.1985.5.4.301