Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems

被引:102
作者
Humeniuk, Stephan [1 ,2 ]
Roscilde, Tommaso [1 ]
机构
[1] Univ Lyon, Ecole Normale Super Lyon, CNRS UMR 5672, Phys Lab, F-69364 Lyon, France
[2] Inst Ciencies Foton & Opt, Castelldefels 08860, Spain
关键词
D O I
10.1103/PhysRevB.86.235116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows us to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the stochastic series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hard-core bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.
引用
收藏
页数:8
相关论文
共 27 条
[1]   Entanglement entropy of two disjoint intervals in c=1 theories [J].
Alba, Vincenzo ;
Tagliacozzo, Luca ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[2]  
Anderson P. W., 1983, BASIC NOTIONS CONDEN, P45
[3]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[4]   Worm algorithm and diagrammatic Monte Carlo: A new approach to continuous-space path integral Monte Carlo simulations [J].
Boninsegni, M. ;
Prokof'ev, N. V. ;
Svistunov, B. V. .
PHYSICAL REVIEW E, 2006, 74 (03)
[5]   Numerical study of entanglement entropy in SU(2) lattice gauge theory [J].
Buividovich, P. V. ;
Polikarpov, M. I. .
NUCLEAR PHYSICS B, 2008, 802 (03) :458-474
[6]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[7]   Entanglement entropy and twist fields [J].
Caraglio, Michele ;
Gliozzi, Ferdinando .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (11)
[8]   Universal terms for the entanglement entropy in 2+1 dimensions [J].
Casini, H. ;
Huerta, M. .
NUCLEAR PHYSICS B, 2007, 764 (03) :183-201
[9]   Entanglement entropy in free quantum field theory [J].
Casini, H. ;
Huerta, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
[10]   PATH-INTEGRALS IN THE THEORY OF CONDENSED HELIUM [J].
CEPERLEY, DM .
REVIEWS OF MODERN PHYSICS, 1995, 67 (02) :279-355