Quantum Monte Carlo calculation of entanglement Renyi entropies for generic quantum systems

被引:96
|
作者
Humeniuk, Stephan [1 ,2 ]
Roscilde, Tommaso [1 ]
机构
[1] Univ Lyon, Ecole Normale Super Lyon, CNRS UMR 5672, Phys Lab, F-69364 Lyon, France
[2] Inst Ciencies Foton & Opt, Castelldefels 08860, Spain
关键词
D O I
10.1103/PhysRevB.86.235116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a general scheme for the calculation of the Renyi entropy of a subsystem in quantum many-body models that can be efficiently simulated via quantum Monte Carlo. When the simulation is performed at very low temperature, the above approach delivers the entanglement Renyi entropy of the subsystem, and it allows us to explore the crossover to the thermal Renyi entropy as the temperature is increased. We implement this scheme explicitly within the stochastic series expansion as well as within path-integral Monte Carlo, and apply it to quantum spin and quantum rotor models. In the case of quantum spins, we show that relevant models in two dimensions with reduced symmetry (XX model or hard-core bosons, transverse-field Ising model at the quantum critical point) exhibit an area law for the scaling of the entanglement entropy.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Measuring Renyi Entanglement Entropy in Quantum Monte Carlo Simulations
    Hastings, Matthew B.
    Gonzalez, Ivan
    Kallin, Ann B.
    Melko, Roger G.
    PHYSICAL REVIEW LETTERS, 2010, 104 (15)
  • [2] Renyi entropies of interacting fermions from determinantal quantum Monte Carlo simulations
    Broecker, Peter
    Trebst, Simon
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [3] Improving entanglement and thermodynamic Renyi entropy measurements in quantum Monte Carlo
    Luitz, David J.
    Plat, Xavier
    Laflorencie, Nicolas
    Alet, Fabien
    PHYSICAL REVIEW B, 2014, 90 (12):
  • [4] Quantum Monte Carlo study of entanglement in quantum spin systems
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 293 - 302
  • [5] Quantum Monte Carlo Study of Entanglement in Quantum Spin Systems
    Tommaso Roscilde
    Paola Verrucchi
    Andrea Fubini
    Stephan Haas
    Valerio Tognetti
    Journal of Low Temperature Physics, 2005, 140 : 293 - 302
  • [6] Path-integral Monte Carlo method for Renyi entanglement entropies
    Herdman, C. M.
    Inglis, Stephen
    Roy, P. -N.
    Melko, R. G.
    Del Maestro, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [7] Measuring Renyi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
    Zhao, Jiarui
    Chen, Bin-Bin
    Wang, Yan-Cheng
    Yan, Zheng
    Cheng, Meng
    Meng, Zi Yang
    NPJ QUANTUM MATERIALS, 2022, 7 (01)
  • [8] MONTE-CARLO CALCULATION OF QUANTUM-SYSTEMS
    TAKAHASHI, M
    IMADA, M
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (03) : 963 - 974
  • [9] Quantum entropies and entanglement
    Batle, J
    Casas, M
    Plastino, AR
    Plastino, A
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2005, 3 (01) : 99 - 104
  • [10] Renyi entanglement entropies in quantum dimer models: from criticality to topological order
    Stephan, Jean-Marie
    Misguich, Gregoire
    Pasquier, Vincent
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,