Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening

被引:101
作者
Bohuslavskyi, H. [1 ]
Jansen, A. G. M. [2 ]
Barraud, S. [1 ]
Barral, V. [1 ]
Casse, M. [1 ]
Le Guevel, L. [1 ]
Jehl, X. [2 ]
Hutin, L. [1 ]
Bertrand, B. [1 ]
Billiot, G. [1 ]
Pillonnet, G. [1 ]
Arnaud, F. [3 ]
Galy, P. [3 ]
De Franceschi, S. [2 ]
Vinet, M. [1 ]
Sanquer, M. [2 ]
机构
[1] CEA, LETI, Minatec Campus, F-38054 Grenoble, France
[2] Univ Grenoble Alpes, CEA, INAC PHELIQS, F-38054 Grenoble, France
[3] ST Microelect, F-38920 Crolles, France
基金
欧盟地平线“2020”;
关键词
Cryogenic electronics; MOSFET; subthreshold swing; 28 nm FD-SOI; band tail; quantum computing; CMOS; TECHNOLOGIES; DENSITY;
D O I
10.1109/LED.2019.2903111
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the standard MOSFET description of the drain current ID as a function of applied gate voltage V (GS), the subthreshold swing SS(T) = dV(GS)/d log I-D has a fundamental lower limit as a function of temperature T given by SS(T) = ln 10 k(B) T/e. However, recent low-temperature studies of different advanced CMOS technologies have reported SS(4 K or lower) values that are at least an order of magnitude larger. Here, we present and analyze the saturation of SS(T) in 28 nm fully-depleted silicon-on-insulator (FD-SOI) devices for both n- and p-type MOSFETs of different gate oxide thicknesses and gate lengths down to 4 K. Until now, the increase of interface-trap density close to the band edge as temperature decreases has been put forward to understand the saturation. Here, an original explanation of the phenomenon is presentedby considering a disorder-induced tail in the density of states at the conduction (valence) band edge for the calculation of the MOS channel transport by applying the Fermi-Dirac statistics. This results in a subthreshold I-D similar to (e)eV (GS)/k(B) T-0 for T-0 = 35 K with saturation value SS(T < T-0) = ln 10 k(B) T-0/e. The proposed model adequately describes the experimental data of SS(T) from 300 down to 4 K using k BT0 similar or equal to 3 meV for the width of the exponential tail and can also accurately describe SS(I-D) within the whole subthreshold region. Our analysis allows a direct determination of the technology-dependent band-tail extension forming a crucial element in future compact modeling and the design of cryogenic circuits.
引用
收藏
页码:784 / 787
页数:4
相关论文
共 33 条
[1]  
[Anonymous], 2018, 2018 JT INT EUROSOI, DOI DOI 10.1109/ULIS.2018.8354742
[2]  
Beckers A., 2018, Revised theoretical limit of subthreshold swing in field-effect transistors
[3]   Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Enz, Christian .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01) :1007-1018
[4]   Cryogenic MOS Transistor Model [J].
Beckers, Arnout ;
Jazaeri, Farzan ;
Enz, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (09) :3617-3625
[5]   Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization [J].
Bohuslavskyi, H. ;
Barraud, S. ;
Barral, V. ;
Casse, M. ;
Le Guevel, L. ;
Hutin, L. ;
Bertrand, B. ;
Crippa, A. ;
Jehl, X. ;
Pillonnet, G. ;
Jansen, A. G. M. ;
Arnaud, F. ;
Galy, P. ;
Maurand, R. ;
De Franceschi, S. ;
Sanquer, M. ;
Vinet, M. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (09) :3682-3688
[6]  
Bohuslavskyi H, 2017, IEEE SILICON NANOELE, P143, DOI 10.23919/SNW.2017.8242338
[7]   Spectroscopic charge pumping in Si nanowire transistors with a high-κ/metal gate [J].
Casse, M. ;
Tachi, K. ;
Thiele, S. ;
Ernst, T. .
APPLIED PHYSICS LETTERS, 2010, 96 (12)
[8]   Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond [J].
Doris, B. ;
DeSalvo, B. ;
Cheng, K. ;
Morin, P. ;
Vinet, M. .
SOLID-STATE ELECTRONICS, 2016, 117 :37-59
[9]   Cryogenic Temperature Characterization of a 28-nm FD-SOI Dedicated Structure for Advanced CMOS and Quantum Technologies Co-Integration [J].
Galy, P. ;
Lemyre, J. Camirand ;
Lemieux, P. ;
Arnaud, F. ;
Drouin, D. ;
Pioro-Ladriere, M. .
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2018, 6 (01) :594-600
[10]   DENSITY OF STATES IN A TWO-DIMENSIONAL ELECTRON-GAS - IMPURITY BANDS AND BAND TAILS [J].
GOLD, A ;
SERRE, J ;
GHAZALI, A .
PHYSICAL REVIEW B, 1988, 37 (09) :4589-4603