Passive wireless UV SAW sensor

被引:12
作者
Karapetyan, G. Ya. [1 ]
Kaydashev, V. E. [2 ]
Kutepov, M. E. [1 ]
Minasyan, T. A. [1 ]
Kalinin, V. A. [3 ]
Kislitsyn, V. O. [3 ]
Kaidashev, E. M. [1 ]
机构
[1] Southern Fed Univ, Lab Nanomat, Stachki 200-1, Rostov Na Donu 344090, Russia
[2] Moscow Inst Phys & Technol, 9 Inst Skiy Per, Dolgoprudnyi 141701, Russia
[3] LLC STC RUS, Maly Av VI 54,Built 5, St Petersburg 199178, Russia
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2020年 / 126卷 / 10期
关键词
SAW device; UV light sensor; ZnO films; Interdigital transducer; Interdigital system; External impedance;
D O I
10.1007/s00339-020-03980-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents studies of a passive wireless ultraviolet (UV) surface acoustic wave (SAW) sensor operating in the frequency range 436-440 MHz. The sensor contains two SAW delay lines (DLs). The first DL is measuring, and the second is the reference. In the measuring DL, receiving-transmitting inter-digital transducer (IDT) is connected to the antenna and the sensing element zinc oxide film. In the reference DL, the receiving-transmitting IDT is connected to another antenna and does not contain a UV-sensitive element. Two methods of information reading from the sensor are proposed: based on the Fourier transform of the frequency dependence of the parameter S11 of the reader antenna and using reading pulses of 1.5-mu s duration, which have carrier frequencies corresponding to the central frequencies of the measuring and reference channels. The sensor can measure UV intensities from 10 to 40,000 mu W/cm(2) with a maximum sensitivity of 6000 ppm/(mu W/cm(2)) at low intensities, and which rapidly decreases as the UV intensity increases (less than 100 ppm at the UV intensity of 40,0000 mu w/cm(2)).
引用
收藏
页数:9
相关论文
共 26 条
[1]  
Chen L., 2013, Energy and Power Engineering, V5, P1298, DOI [DOI 10.4236/EPE.2013.54B246, 10.4236/epe.2013.54B246]
[2]   SAW Sensors for Chemical Vapors and Gases [J].
Devkota, Jagannath ;
Ohodnicki, Paul R. ;
Greve, David W. .
SENSORS, 2017, 17 (04)
[3]   Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire [J].
Emanetoglu, NW ;
Zhu, J ;
Chen, Y ;
Zhong, J ;
Chen, YM ;
Lu, YC .
APPLIED PHYSICS LETTERS, 2004, 85 (17) :3702-3704
[4]   Ultraviolet sensing based on nanostructured ZnO/Si surface acoustic wave devices [J].
Guo, Y. J. ;
Zhao, C. ;
Zhou, X. S. ;
Li, Y. ;
Zu, X. T. ;
Gibson, D. ;
Fu, Y. Q. .
SMART MATERIALS AND STRUCTURES, 2015, 24 (12)
[5]   High performance dual-wave mode flexible surface acoustic wave resonators for UV light sensing [J].
He, X. L. ;
Zhou, J. ;
Wang, W. B. ;
Xuan, W. P. ;
Yang, X. ;
Jin, H. ;
Luo, J. K. .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2014, 24 (05)
[6]   Surface acoustic wave sensors for high-temperature applications [J].
Hornsteiner, J ;
Born, E ;
Fischerauer, G ;
Riha, E .
PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL FREQUENCY CONTROL SYMPOSIUM, 1998, :615-620
[7]   Sensitivity improvement of the surface acoustic wave ultraviolet sensor based on zinc oxide nanoparticle layer with an ultrathin gold layer [J].
Jo, Minuk ;
Lee, Ki Jung ;
Yang, Sang Sik .
SENSORS AND ACTUATORS A-PHYSICAL, 2014, 210 :59-66
[8]   High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition [J].
Kaidashev, EM ;
Lorenz, M ;
von Wenckstern, H ;
Rahm, A ;
Semmelhack, HC ;
Han, KH ;
Benndorf, G ;
Bundesmann, C ;
Hochmuth, H ;
Grundmann, M .
APPLIED PHYSICS LETTERS, 2003, 82 (22) :3901-3903
[9]  
Kalinin V., 2004 IEEE RAD WIR C
[10]   Use of multiple acoustic reflections to enhance SAW UV photo-detector sensitivity [J].
Karapetyan, G. Y. ;
Kaydashev, V. E. ;
Zhilin, D. A. ;
Minasyan, T. A. ;
Abdulvakhidov, K. G. ;
Kaidashev, E. M. .
SMART MATERIALS AND STRUCTURES, 2017, 26 (03)