Improving salinity tolerance in crop plants: a biotechnological view

被引:177
|
作者
Arzani, Ahmad [1 ]
机构
[1] Isfahan Univ Technol, Coll Agr, Agron & Plant Breeding Dept, Esfahan 84156, Iran
关键词
Salt tolerance; In vitro; Field; Screening; Breeding;
D O I
10.1007/s11627-008-9157-7
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salinity limits the production capabilities of agricultural soils in large areas of the world. Both breeding and screening germplasm for salt tolerance encounter the following limitations: (a) different phenotypic responses of plants at different growth stages, (b) different physiological mechanisms, (c) complicated genotype x environment interactions, and (d) variability of the salt-affected field in its chemical and physical soil composition. Plant molecular and physiological traits provide the bases for efficient germplasm screening procedures through traditional breeding, molecular breeding, and transgenic approaches. However, the quantitative nature of salinity stress tolerance and the problems associated with developing appropriate and replicable testing environments make it difficult to distinguish salt-tolerant lines from sensitive lines. In order to develop more efficient screening procedures for germplasm evaluation and improvement of salt tolerance, implementation of a rapid and reliable screening procedure is essential. Field selection for salinity tolerance is a laborious task; therefore, plant breeders are seeking reliable ways to assess the salt tolerance of plant germplasm. Salt tolerance in several plant species may operate at the cellular level, and glycophytes are believed to have special cellular mechanisms for salt tolerance. Ion exclusion, ion sequestration, osmotic adjustment, macromolecule protection, and membrane transport system adaptation to saline environments are important strategies that may confer salt tolerance to plants. Cell and tissue culture techniques have been used to obtain salt tolerant plants employing two in vitro culture approaches. The first approach is selection of mutant cell lines from cultured cells and plant regeneration from such cells (somaclones). In vitro screening of plant germplasm for salt tolerance is the second approach, and a successful employment of this method in durum wheat is presented here. Doubled haploid lines derived from pollen culture of F-1 hybrids of salt-tolerant parents are promising tools to further improve salt tolerance of plant cultivars. Enhancement of resistance against both hyper-osmotic stress and ion toxicity may also be achieved via molecular breeding of salt-tolerant plants using either molecular markers or genetic engineering.
引用
收藏
页码:373 / 383
页数:11
相关论文
共 50 条
  • [1] Improving salinity tolerance in crop plants: a biotechnological view
    Ahmad Arzani
    In Vitro Cellular & Developmental Biology - Plant, 2008, 44 : 373 - 383
  • [2] Genomics Approaches For Improving Salinity Stress Tolerance in Crop Plants
    Nongpiur, Ramsong Chantre
    Singla-Pareek, Sneh Lata
    Pareek, Ashwani
    CURRENT GENOMICS, 2016, 17 (04) : 343 - 357
  • [3] Prospects of success of biotechnological approaches for improving tolerance to drought stress in crop plants
    Water Technology Centre, Indian Agric. Research Institute, New Delhi 110 012, India
    Curr. Sci., 1 (25-34):
  • [4] Prospects of success of biotechnological approaches for improving tolerance to drought stress in crop plants
    Khanna-Chopra, R
    Sinha, SK
    CURRENT SCIENCE, 1998, 74 (01): : 25 - 34
  • [5] Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants
    Basu, Sahana
    Kumar, Alok
    Benazir, Ibtesham
    Kumar, Gautam
    PHYSIOLOGIA PLANTARUM, 2021, 171 (04) : 502 - 519
  • [6] Anthocyanins: Biotechnological targets for enhancing crop tolerance to salinity stress
    Mansour, Mohamed Magdy F.
    SCIENTIA HORTICULTURAE, 2023, 319
  • [7] Energy costs of salinity tolerance in crop plants
    Tyerman, Stephen D.
    Munns, Rana
    Fricke, Wieland
    Arsova, Borjana
    Barkla, Bronwyn J.
    Bose, Jayakumar
    Bramley, Helen
    Byrt, Caitlin
    Chen, Zhonghua
    Colmer, Timothy D.
    Cuin, Tracey
    Day, David A.
    Foster, Kylie J.
    Gilliham, Matthew
    Henderson, Sam W.
    Horie, Tomoaki
    Jenkins, Colin L. D.
    Kaiser, Brent N.
    Katsuhara, Maki
    Plett, Darren
    Miklavcic, Stanley J.
    Roy, Stuart J.
    Rubio, Francisco
    Shabala, Sergey
    Shelden, Megan
    Soole, Kathleen
    Taylor, Nicolas L.
    Tester, Mark
    Watt, Michelle
    Wege, Stefanie
    Wegner, Lars H.
    Wen, Zhengyu
    NEW PHYTOLOGIST, 2019, 221 (01) : 25 - 29
  • [8] Improving Flooding Tolerance of Crop Plants
    Mustroph, Angelika
    AGRONOMY-BASEL, 2018, 8 (09):
  • [9] Impacts of salinity stress on crop plants: improving salt tolerance through genetic and molecular dissection
    Atta, Kousik
    Mondal, Saptarshi
    Gorai, Shouvik
    Singh, Aditya Pratap
    Kumari, Amrita
    Ghosh, Tuhina
    Roy, Arkaprava
    Hembram, Suryakant
    Gaikwad, Dinkar Jagannath
    Mondal, Subhasis
    Bhattacharya, Sudip
    Jha, Uday Chand
    Jespersen, David
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [10] Understanding the significance of sulfur in improving salinity tolerance in plants
    Nazar, Rahat
    Iqbal, Noushina
    Masood, Asim
    Syeed, Shabina
    Khan, Nafees A.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2011, 70 (2-3) : 80 - 87