Atomic scale effects of alloying, partitioning, solute drag and austempering on the mechanical properties of high-carbon bainitic-austenitic TRIP steels

被引:130
作者
Seol, Jae-Bok [1 ]
Raabe, Dierk [1 ]
Choi, Puck-Pa [1 ]
Im, Yung-Rok [2 ]
Park, Chan-Gyung [3 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] POSCO, Tech Res Labs, Pohang 790785, South Korea
[3] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
关键词
High-carbon steels; TRIP effect; Bainite; Austempering; Retained austenite; FE-C-MN; X-RAY-DIFFRACTION; RETAINED AUSTENITE; PROBE TOMOGRAPHY; FERRITE GROWTH; THERMAL-STABILITY; MULTIPHASE STEELS; TRANSFORMATION; MODEL; SI;
D O I
10.1016/j.actamat.2012.07.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Understanding alloying and thermal processing at an atomic scale is essential for the optimal design of high-carbon (0.71 wt.%) bainitic-austenitic transformation-induced plasticity (TRIP) steels. We investigate the influence of the austempering temperature, chemical composition (especially the Si:Al ratio) and partitioning on the nanostructure and mechanical behavior of these steels by atom probe tomography. The effects of the austempering temperature and of Si and Al on the compositional gradients across the phase boundaries between retained austenite and bainitic ferrite are studied. We observe that controlling these parameters (i.e. Si, Al content and austempering temperature) can be used to tune the stability of the retained austenite and hence the mechanical behavior of these steels. We also study the atomic scale redistribution of Mn and Si at the bainitic ferrite/austenite interface. The observations suggest that either paraequilibrium or local equilibrium-negligible partitioning conditions prevail depending on the Si:Al ratio during bainite transformation. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6183 / 6199
页数:17
相关论文
共 81 条
[1]  
AARONSON HI, 1966, T METALL SOC AIME, V236, P781
[2]   Effect of retained austenite characteristics on fatigue behavior and tensile properties of transformation induced plasticity steel [J].
Abareshi, M. ;
Emadoddin, E. .
MATERIALS & DESIGN, 2011, 32 (10) :5099-5105
[3]   Development of the surface structure of TRIP steels prior to hot-dip galvanizing [J].
Bellhouse, E. M. ;
Mertens, A. I. M. ;
McDermid, J. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 463 (1-2) :147-156
[4]   THE MECHANISM OF BAINITE FORMATION IN STEELS [J].
BHADESHIA, HKDH ;
EDMONDS, DV .
ACTA METALLURGICA, 1980, 28 (09) :1265-1273
[5]   BAINITE - AN ATOM-PROBE STUDY OF THE INCOMPLETE REACTION PHENOMENON [J].
BHADESHIA, HKDH ;
WAUGH, AR .
ACTA METALLURGICA, 1982, 30 (04) :775-784
[6]   A model accounting for spatial overlaps in 3D atom-probe microscopy [J].
Blavette, D ;
Vurpillot, F ;
Pareige, P ;
Menand, A .
ULTRAMICROSCOPY, 2001, 89 (1-3) :145-153
[7]   Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in astroloy nickel base superalloys [J].
Blavette, D ;
Duval, P ;
Letellier, L ;
Guttmann, M .
ACTA MATERIALIA, 1996, 44 (12) :4995-5005
[8]   A mixed-mode model for partitioning phase transformations [J].
Bos, C. ;
Sietsma, J. .
SCRIPTA MATERIALIA, 2007, 57 (12) :1085-1088
[9]   Redistribution of alloying elements during tempering of a nanocrystalline steel [J].
Caballero, F. G. ;
Miller, M. K. ;
Garcia-Mateo, C. ;
Capdevila, C. ;
Babu, S. S. .
ACTA MATERIALIA, 2008, 56 (02) :188-199
[10]   Atomic scale observations of bainite transformation in a high carbon high silicon steel [J].
Caballero, F. G. ;
Miller, M. K. ;
Babu, S. S. ;
Garcia-Mateo, C. .
ACTA MATERIALIA, 2007, 55 (01) :381-390