On finite-time stability of state dependent impulsive dynamical systems

被引:7
作者
Ambrosino, R. [1 ]
Calabrese, F. [2 ]
Cosentino, C. [3 ]
De Tommasi, G. [2 ]
机构
[1] Univ Napoli Parthenope, Dipartimento Tecnol, Via Medina 40, I-80133 Naples, Italy
[2] Univ Naples Federico II, Dipartimento Informat & Sistemist, I-80125 Naples, Italy
[3] Univ Magna Gracia Catanzaro, Sch Comp Sci & Biomed Engn, I-88100 Catanzaro, Italy
来源
2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12 | 2008年
关键词
D O I
10.1109/ACC.2008.4586935
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper extends the finite-time stability problem to state dependent impulsive dynamical systems. For this class of hybrid systems, the state jumps when the trajectory reaches a resetting set, which is a subset of the state space. A sufficient condition for finite-time stability of state dependent impulsive dynamical systems is provided. Moreover, S - procedure arguments are exploited to obtain a formulation of this sufficient condition which is numerically tractable by means of Differential Linear Matrix Inequalities (DLMIs). Such a formulation may be in general more conservative, for this reason a procedure which allows to automate its verification, without introduce conservatism, is given both for second order systems, and when the resetting set is ellispoidal.
引用
收藏
页码:2897 / +
页数:2
相关论文
共 16 条
[1]   Finite-time output feedback control of linear systems via differential linear matrix conditions [J].
Amato, F. ;
Ariola, M. ;
Carbone, M. ;
Cosentino, C. .
PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, :5371-+
[2]   Finite-time stabilization via dynamic output feedback [J].
Amato, F ;
Ariola, M ;
Cosentino, C .
AUTOMATICA, 2006, 42 (02) :337-342
[3]   Finite-time control of linear systems subject to parametric uncertainties and disturbances [J].
Amato, F ;
Ariola, M ;
Dorato, P .
AUTOMATICA, 2001, 37 (09) :1459-1463
[4]  
[Anonymous], THESIS CHALMERS U TE
[5]  
BOYD S, 1994, LINEAR MATRIX INEQUI
[6]  
Dorato P, 1961, P IRE INT CONV REC 4, V4, P83
[7]  
Haddad WM., 2006, IMPULSIVE HYBRID DYN
[8]  
JAKUBOVIC VA, 1971, VESTNIK LENINGRAD U, V4, P73
[9]   Computation of piecewise quadratic Lyapunov functions for hybrid systems [J].
Johansson, M ;
Rantzer, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :555-559
[10]  
Liberzon D., 2003, SYS CON FDN