The new exact analytical solutions and numerical simulation of (3

被引:2
作者
Zhang, Lanfang [1 ]
Ji, Juanjuan [1 ]
Jiang, Julang [1 ]
Zhang, Chaolong [1 ]
机构
[1] Anqing Normal Univ, Sch Phys & Elect Engn, Anqing, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
(3 + 1)-dimensional time fractional KZK equation; diffraction; thermoviscous attenuation; nonlinearity fractional complex transform; numerical simulation; PARTIAL-DIFFERENTIAL-EQUATIONS; 1ST INTEGRAL METHOD; EXP-FUNCTION; TRANSFORM;
D O I
10.1504/IJCSM.2019.098744
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The KZK parabolic nonlinear wave equation is one of the most widely employed nonlinear models for propagation of 3D diffraction sound beams in dissipative media. In this paper, the exact analytical solutions of (3 + 1)-dimensional time fractional KZK equation have been constructed in the sense of modified Riemann-Liouville derivative and the (G'/G)-expansion method, the simplest equation and the fractional complex transform. As a result, some new exact analytical solutions are obtained, and the effects of diffraction, attenuation and nonlinearity are researched deeply using the obtained exact analytical solutions.
引用
收藏
页码:174 / 192
页数:19
相关论文
共 27 条
[1]   The first integral method for modified Benjamin-Bona-Mahony equation [J].
Abbasbandy, S. ;
Shirzadi, A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) :1759-1764
[2]  
Ablowitz M.J., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
[3]  
Bekir A., 2015, FUNCTIONAL VARIABLE, P1
[4]  
Bekir A., 2013, ABSTR APPL ANAL, V1, P233
[5]  
Bekir A, 2015, ROM J PHYS, V60, P360
[6]  
Debnath L, 2006, INTEGRAL TRANSFORMS
[7]   Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation [J].
Gepreel, Khaled A. ;
Mohamed, Mohamed S. .
CHINESE PHYSICS B, 2013, 22 (01)
[8]   The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations [J].
Gepreel, Khaled A. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (08) :1428-1434
[9]   Fractional calculus - A new approach to the analysis of generalized fourth-order diffusion-wave equations [J].
Golbabai, A. ;
Sayevand, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (08) :2227-2231
[10]   Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus [J].
He, Ji-Huan ;
Elagan, S. K. ;
Li, Z. B. .
PHYSICS LETTERS A, 2012, 376 (04) :257-259