Thermal-Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film

被引:152
作者
Liu, Kang [1 ]
Ding, Tianpeng [1 ]
Li, Jia [1 ]
Chen, Qian [1 ]
Xue, Guobin [1 ]
Yang, Peihua [1 ]
Xu, Ming [2 ]
Wang, Zhong Lin [3 ,4 ]
Zhou, Jun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
electrokinetic; porous carbon films; self-powered; thermal-electric; waste heat; THERMOELECTRIC FIGURE; ENERGY; POWER; HEAT; CONVERSION; MERIT; TEMPERATURE; NANOTUBE;
D O I
10.1002/aenm.201702481
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Converting low-grade thermal energy with small temperature gradient into electricity is challenging due to the low efficiency and high cost. Here, a new type of thermal-electric nanogenerator is reported that utilizes electrokinetic effect for effective harvesting thermal energy. The nanogenerator is based on an evaporation-driven water flow in porous medium with small temperature gradient. With a piece of porous carbon film and deionized water, a maximum open-circuit voltage of 0.89 V under a temperature difference of 4.2 degrees C is obtained, having a corresponding pseudo-Seebeck coefficient of 210 mV K-1. The large pseudo-Seebeck coefficient endows the nanogenerator sufficient power output for powering existing electronics directly. Furthermore, a wearable bracelet nanogenerator utilizing body heat is also demonstrated. The unique properties of such conversion process offer great potential for ultra-low temperature-gradient thermal energy recovery, wearable electronics, and self-powered sensor systems.
引用
收藏
页数:6
相关论文
共 29 条
[1]   High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting [J].
Abraham, Theodore J. ;
MacFarlane, Douglas R. ;
Pringle, Jennifer M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (09) :2639-2645
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Huge Seebeck coefficients in nonaqueous electrolytes [J].
Bonetti, M. ;
Nakamae, S. ;
Roger, M. ;
Guenoun, P. .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (11)
[4]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/nmat3012, 10.1038/NMAT3012]
[5]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[6]   All-Printed Porous Carbon Film for Electricity Generation from Evaporation-Driven Water Flow [J].
Ding, Tianpeng ;
Liu, Kang ;
Li, Jia ;
Xue, Guobin ;
Chen, Qian ;
Huang, Liang ;
Hu, Bin ;
Zhou, Jun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (22)
[7]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[8]   Searching for a Better Thermal Battery [J].
Gur, Ilan ;
Sawyer, Karma ;
Prasher, Ravi .
SCIENCE, 2012, 335 (6075) :1454-1455
[9]   Cubic AgPbmSbTe2+m:: Bulk thermoelectric materials with high figure of merit [J].
Hsu, KF ;
Loo, S ;
Guo, F ;
Chen, W ;
Dyck, JS ;
Uher, C ;
Hogan, T ;
Polychroniadis, EK ;
Kanatzidis, MG .
SCIENCE, 2004, 303 (5659) :818-821
[10]   Harvesting Waste Thermal Energy Using Carbon-Nanotube-Based Thermo-Electrochemical Cell [J].
Hu, Renchong ;
Cola, Baratunde A. ;
Haram, Nanda ;
Barisci, Joseph N. ;
Lee, Sergey ;
Stoughton, Stephanie ;
Wallace, Gordon ;
Too, Chee ;
Thomas, Michael ;
Gestos, Adrian ;
dela Cruz, Marilou E. ;
Ferraris, John P. ;
Zakhidov, Anvar A. ;
Baughman, Ray H. .
NANO LETTERS, 2010, 10 (03) :838-846