On multi-parametric bifurcations in a scalar piecewise-linear map

被引:74
作者
Avrutin, Viktor [1 ]
Schanz, Michael [1 ]
机构
[1] Univ Stuttgart, Inst Parallel & Distributed Syst, D-70569 Stuttgart, Germany
关键词
D O I
10.1088/0951-7715/19/3/001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work a one-dimensional piecewise-linear map is considered. The areas in the parameter space corresponding to specific periodic orbits are determined. Based on these results it is shown that the structure of the 2D and 3D parameter spaces can be simply described using the concept of multi-parametric bifurcations. It is demonstrated that an infinite number of twoparametric bifurcation lines starts at the origin of the 3D parameter space. Along each of these lines an infinite number of bifurcation planes starts, whereas the origin represents a three-parametric bifurcation.
引用
收藏
页码:531 / 552
页数:22
相关论文
共 85 条
[1]  
[Anonymous], J APPL MATH MECH
[2]  
[Anonymous], 1979, PUBL MATH IHES
[3]  
[Anonymous], 1994, FORCED OSCILLATIONS
[4]  
[Anonymous], 1989, MATH PHYS REV
[5]  
Arnol'd V.I, 1977, FUNCT ANAL APPL+, V11, P85, DOI DOI 10.1007/BF01081886
[6]   On the scaling properties of the period-increment scenario in dynamical systems [J].
Avrutin, V ;
Schanz, M .
CHAOS SOLITONS & FRACTALS, 2000, 11 (13) :1949-1955
[7]  
Avrutin V, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026222
[8]  
AVRUTIN V, 1999, P INT C TOOLS MATH M, P4
[9]  
AVRUTIN V, 2004, THESIS U STUTTGART
[10]   Border collision bifurcations in two-dimensional piecewise smooth maps [J].
Banerjee, S ;
Grebogi, C .
PHYSICAL REVIEW E, 1999, 59 (04) :4052-4061