Ultraviolet plasmon resonance in transition-metal doped aluminum nanoparticle arrays

被引:15
作者
Mokkath, Junais Habeeb [1 ]
机构
[1] Kuwait Coll Sci & Technol, Dept Phys, Doha Area, 7th Ring Rd,POB 27235, Safat, Kuwait
关键词
DENSITY-FUNCTIONAL THEORY; EXCITATION-ENERGIES; OPTICAL-PROPERTIES; APPROXIMATION; SPECTROSCOPY; ENHANCEMENT; SUBSTRATE; DIMER;
D O I
10.1039/c8tc00274f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An ordered arrangement of metal nanoparticles is an ideal platform for extreme light localization, thanks to the optically driven free electrons that couple electrically across the interparticle gap region. In this work, we use time-dependent density functional theory calculations to investigate the optical response modulations in impurity (Fe/Co/Ni) doped planar square-shaped aluminum nanoparticle arrays by varying the interparticle gap distances in the range of 1 to 3 nm. The spectral maximum of the enhancement emerges in the near-ultraviolet region for the Fe-doped aluminum nanoparticle array for an interparticle gap distance of 1 nm. Increasing the interparticle gap distances to 2 and 3 nm causes a significant reduction in the spectral intensities as a consequence of decreased interaction among the nanoparticles. This finding shows that transition-metal impurities can provide a potential mechanism for manipulating the spectral response of the aluminum nanoparticle arrays, which may find applications in aluminum plasmon-mediated photocatalysis.
引用
收藏
页码:2225 / 2228
页数:4
相关论文
共 29 条
[1]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[2]   Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J].
Bauernschmitt, R ;
Ahlrichs, R .
CHEMICAL PHYSICS LETTERS, 1996, 256 (4-5) :454-464
[3]   Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions [J].
Bauernschmitt, R ;
Haser, M ;
Treutler, O ;
Ahlrichs, R .
CHEMICAL PHYSICS LETTERS, 1997, 264 (06) :573-578
[4]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[5]   Electron Energy-Loss Spectroscopy Calculation in Finite-Difference Time-Domain Package [J].
Cao, Yang ;
Manjavacas, Alejandro ;
Large, Nicolas ;
Nordlander, Peter .
ACS PHOTONICS, 2015, 2 (03) :369-375
[6]   Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold [J].
Casida, ME ;
Jamorski, C ;
Casida, KC ;
Salahub, DR .
JOURNAL OF CHEMICAL PHYSICS, 1998, 108 (11) :4439-4449
[7]   Exploitation of localized surface plasmon resonance [J].
Hutter, E ;
Fendler, JH .
ADVANCED MATERIALS, 2004, 16 (19) :1685-1706
[8]   Aluminum for Plasmonics [J].
Knight, Mark W. ;
King, Nicholas S. ;
Liu, Lifei ;
Everitt, Henry O. ;
Nordlander, Peter ;
Halas, Naomi J. .
ACS NANO, 2014, 8 (01) :834-840
[9]   Aluminum Plasmonic Nanoantennas [J].
Knight, Mark W. ;
Liu, Lifei ;
Wang, Yumin ;
Brown, Lisa ;
Mukherjee, Shaunak ;
King, Nicholas S. ;
Everitt, Henry O. ;
Nordlander, Peter ;
Halas, Naomi J. .
NANO LETTERS, 2012, 12 (11) :6000-6004
[10]   Plasmonic Interaction between Overlapping Nanowires [J].
Lei, Dang Yuan ;
Aubry, Alexandre ;
Luo, Yu ;
Maier, Stefan A. ;
Pendry, John B. .
ACS NANO, 2011, 5 (01) :597-607