Why mechanobiology? A survey article

被引:149
作者
van der Meulen, MCH
Huiskes, R
机构
[1] Eindhoven Univ Technol, Dept Biomed Engn, NL-5600 MB Eindhoven, Netherlands
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Hosp Special Surg, Dept Biomed Mech & Mat, New York, NY 10021 USA
关键词
tissue differentiation; bone adaptation; computer simulation; tissue engineering; bone diseases;
D O I
10.1016/S0021-9290(01)00184-1
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The central paradigm of skeletal mechanobiology is that mechanical forces modulate morphological and structural fitness of the skeletal tissues-bone, cartilage, ligament and tendon. Traditionally, skeletal biomechanics has focussed on how these tissues perform the structural and locomotory functions of the vertebrate skeleton. In mechanobiology the central question is how these same load-bearing tissues are produced, maintained and adapted by cells as an active response to biophysical stimuli in their environment. The idea that 'form follows function' is not new, but we now believe that the scientific community has the knowledge and tools to prove, understand and use functional adaptation to benefit medicine and human health. In this Survey Article the philosophy and progress of skeletal mechanobiology are discussed. The revival of this science, with roots dating back to the 19th Century, is now driven by new developments in cellular, molecular and computational technologies. These developments are still in an early stage of application, but if modern mechanobiology fulfills the promises of its ambitions, the results will bring great benefits to tissue engineering and to the treatment and prevention of skeletal conditions such as congenital deformities, osteoporosis, osteoarthritis and bone fractures. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:401 / 414
页数:14
相关论文
共 108 条
[1]   Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models [J].
Adachi, T ;
Tsubota, K ;
Tomita, Y ;
Hollister, SJ .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2001, 123 (05) :403-409
[2]   Bone response to in vivo mechanical loading in two breeds of mice [J].
Akhter, MP ;
Cullen, DM ;
Pedersen, EA ;
Kimmel, DB ;
Reeker, RR .
CALCIFIED TISSUE INTERNATIONAL, 1998, 63 (05) :442-449
[3]   Local tissue properties in bone healing: Influence of size and stability of the osteotomy gap [J].
Augat, P ;
Margevicius, K ;
Simon, J ;
Wolf, S ;
Suger, G ;
Claes, L .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1998, 16 (04) :475-481
[4]   A mathematical framework to study the effects of growth factor influences on fracture healing [J].
Bailón-Plaza, A ;
van der Meulen, MCH .
JOURNAL OF THEORETICAL BIOLOGY, 2001, 212 (02) :191-209
[5]   Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice [J].
Beamer, WG ;
Shultz, KL ;
Donahue, LR ;
Churchill, GA ;
Sen, S ;
Wergedal, JR ;
Baylink, DJ ;
Rosen, CJ .
JOURNAL OF BONE AND MINERAL RESEARCH, 2001, 16 (07) :1195-1206
[6]   AN APPROACH FOR TIME-DEPENDENT BONE MODELING AND REMODELING - THEORETICAL DEVELOPMENT [J].
BEAUPRE, GS ;
ORR, TE ;
CARTER, DR .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1990, 8 (05) :651-661
[7]   BONE MODELING DURING GROWTH - DYNAMIC STRAIN EQUILIBRIUM IN THE CHICK TIBIOTARSUS [J].
BIEWENER, AA ;
SWARTZ, SM ;
BERTRAM, JEA .
CALCIFIED TISSUE INTERNATIONAL, 1986, 39 (06) :390-395
[8]  
Biewener AA., 1993, Bone. Volume 7: Bone Growth - B, V7, P1
[9]   ROLE OF MECHANICAL LOADING IN THE PROGRESSIVE OSSIFICATION OF A FRACTURE CALLUS [J].
BLENMAN, PR ;
CARTER, DR ;
BEAUPRE, GS .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1989, 7 (03) :398-407
[10]   MODULATION OF OSTEOGENESIS IN FETAL BONE RUDIMENTS BY MECHANICAL-STRESS INVITRO [J].
BURGER, EH ;
KLEINNULEND, J ;
VELDHUIJZEN, JP .
JOURNAL OF BIOMECHANICS, 1991, 24 :101-+