On the effective behavior of viscoelastic composites in three dimensions

被引:36
作者
Cruz-Gonzalez, O. L. [1 ]
Rodriguez-Ramos, R. [2 ,3 ]
Otero, J. A. [4 ]
Ramirez-Torres, A. [5 ]
Penta, R. [6 ]
Lebon, F. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, LMA UMR Marseille, Marseille, France
[2] Univ La Habana, Fac Matemat & Computac, Havana 10400, Cuba
[3] Tecnol Monterrey, Escuela Ingn & Ciencias, Campus Puebla Atlixcayotl 5718, Puebla 72453, Mexico
[4] Tecnol Monterrey, Escuela Ingn & Ciencias, Campus Estado Mexico, Atizapan De Zaragoza 52926, Mexico
[5] Politecn Torino, Dipartimento Sci Matemat GL Lagrange, I-10129 Turin, Italy
[6] Univ Glasgow, Sch Math & Stat, Math & Stat Bldg,Univ Pl, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 英国医学研究理事会;
关键词
Viscoelasticity; Composite materials; Fibrous and inclusion reinforcement; Asymptotic homogenization method; Computational study; ASYMPTOTIC HOMOGENIZATION; APPROXIMATE; MODELS; MEDIA;
D O I
10.1016/j.ijengsci.2020.103377
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We address the calculation of the effective properties of non-aging linear viscoelastic composite materials. This is done by solving the microscale periodic local problems obtained via the Asymptotic Homogenization Method (AHM) by means of finite element three-dimensional simulations. The work comprises the investigation of the effective creep and relaxation behavior for a variety of fiber and inclusion reinforced structures (e.g. polymeric matrix composites). As starting point, we consider the elastic-viscoelastic correspondence principle and the Laplace-Carson transform. Then, a classical asymptotic homogenization approach for composites with discontinuous material properties and perfect contact at the interface between the constituents is performed. In particular, we reach to the stress jump conditions from local problems and obtain the corresponding interface loads. Furthermore, we solve numerically the local problems in the Laplace-Carson domain, and compute the effective coefficients. Moreover, the inversion to the original temporal space is also carried out. Finally, we compare our results with those obtained from different homogenization approaches, such as the Finite-Volume Direct Averaging Micromechanics (FVDAM) and the Locally Exact Homogenization Theory (LEHT). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 56 条
[1]   Multiscale convergence and reiterated homogenisation [J].
Allaire, G ;
Briane, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :297-342
[2]  
Auriault J.-L., 2009, Homogenization of Coupled Phenomena in Heterogenous Media, DOI DOI 10.1002/9780470612033
[3]  
BAKHVALOV N., 1989, Homogenisation: Averaging Processes in Periodic Media: Mathematical Problems in the Mechanics of Composite Materials, V36, DOI 10.1007/978-94-009-2247-1
[4]   Effective properties of ageing linear viscoelastic media with spheroidal inhomogeneities [J].
Barthelemy, J. -F. ;
Giraud, A. ;
Sanahuja, J. ;
Sevostianov, I. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2019, 144
[5]  
Bensoussan A., 1978, Stud. Math. Appl.
[6]   Unified analytical formulae for the effective properties of periodic fibrous composites [J].
Bravo-Castillero, Julian ;
Guinovart-Diaz, Raul ;
Rodriguez-Ramos, Reinaldo ;
Sabina, Federico J. ;
Brenner, Renald .
MATERIALS LETTERS, 2012, 73 :68-71
[7]   A review on the biomechanics of coronary arteries [J].
Carpenter, Harry J. ;
Gholipour, Alireza ;
Ghayesh, Mergen H. ;
Zander, Anthony C. ;
Psaltis, Peter J. .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2020, 147
[8]   Homogenization of periodic materials with viscoelastic phases using the generalized FVDAM theory [J].
Cavalcante, Marcio A. A. ;
Marques, Severino P. C. .
COMPUTATIONAL MATERIALS SCIENCE, 2014, 87 :43-53
[9]   Finite-volume homogenization of elastic/viscoelastic periodic materials [J].
Chen, Qiang ;
Wang, Guannan ;
Chen, Xuefeng ;
Geng, Jia .
COMPOSITE STRUCTURES, 2017, 182 :457-470
[10]   A micromechanics-based constitutive model for linear viscoelastic particle-reinforced composites [J].
Chen, Yang ;
Yang, Pingping ;
Zhou, Yexin ;
Guo, Zaoyang ;
Dong, Leiting ;
Busso, Esteban P. .
MECHANICS OF MATERIALS, 2020, 140