MODULI OF PT-SEMISTABLE OBJECTS II

被引:9
作者
Lo, Jason [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
PT-stability; semistable reduction; derived category; moduli; valuative criterion; VALUATIVE CRITERIA; T-STRUCTURES; SHEAVES; COMPLEXES; FAMILIES; LIMIT;
D O I
10.1090/S0002-9947-2013-05622-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalise the techniques of semistable reduction for flat families of sheaves to the setting of the derived category D-b(X) of coherent sheaves on a smooth projective three-fold X. Then we construct the moduli of PT-semistable objects in D-b(X) as an Artin stack of finite type that is universally closed. In the absence of strictly semistable objects, we construct the moduli as a proper algebraic space of finite type.
引用
收藏
页码:4539 / 4573
页数:35
相关论文
共 23 条
  • [1] Abramovich D, 2006, J REINE ANGEW MATH, V590, P89
  • [2] Arcara D., ARXIV07082247V1MATHA
  • [3] Polynomial Bridgeland stability conditions and the large volume limit
    Bayer, Arend
    [J]. GEOMETRY & TOPOLOGY, 2009, 13 : 2389 - 2425
  • [4] Bondal A, 2003, MOSC MATH J, V3, P1
  • [5] Gelfand Sergei I., 1996, METHODS HOMOLOGICAL
  • [6] Happel D., 1996, Memoirs of the American Mathematical Society, V120, P575
  • [7] Huybrechts D., 2006, Oxford Mathematical Monographs
  • [8] Huybrechts D., 1997, ASPECTS MATH E, V31
  • [9] Toward a definition of moduli of complexes of coherent sheaves on a projective scheme
    Inaba, M
    [J]. JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2002, 42 (02): : 317 - 329
  • [10] Kashiwara KS1] Masaki, 1990, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], V292