Nanoindentation-based study of the mechanical behavior of bulk supercrystalline ceramic-organic nanocomposites

被引:56
作者
Bor, Buesra [1 ]
Giuntini, Diletta [1 ]
Domenech, Berta [1 ]
Swain, Michael V. [2 ,3 ]
Schneider, Gerold A. [1 ]
机构
[1] Hamburg Univ Technol, Inst Adv Ceram, Denickestr 15, D-21073 Hamburg, Germany
[2] Univ Sydney, Dept Aerosp Mech & Mechatron Engn, J07, Sydney, NSW 2006, Australia
[3] Don State Tech Univ, Biomat Engn, Rostov Na Donu 344000, Russia
关键词
Supercrystalline material; Nanocomposite; Mechanical behavior; Nanoindentation; Fracture toughness; FRACTURE-TOUGHNESS; ELASTIC-MODULUS; COLLOIDAL NANOCRYSTALS; INDENTATION; HARDNESS; RESISTANCE; TOLERANCE; DAMAGE; LOAD; SIZE;
D O I
10.1016/j.jeurceramsoc.2019.03.053
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk poly-supercrystalline ceramic-organic nanocomposites were produced and characterized with a nanoindentation-based study. These nanocomposites were processed using two different routines, to compare their properties with and without crosslinking the organic ligands interfacing the ceramic nanoparticles. Together with the expected material strengthening induced by crosslinking, a distinct response emerges when using Berkovich and cube-corner indenters. The supercrystalline materials are prone to compaction, cracking and chipping phenomena that become more severe when a sharper tip is employed, implying that a Berkovich indenter is more suitable for the evaluation of elastic modulus and hardness. The cube-corner tip, on the other hand, is employed for the investigation of fracture toughness, comparing two methods and multiple models available from the literature. The fracture toughness outcomes suggest that cracks evolve with a quarter-penny shaped profile at the indent's corners, and that extrinsic toughening mechanisms, such as plastic-like deformation and crack deflection, play a significant role.
引用
收藏
页码:3247 / 3256
页数:10
相关论文
共 47 条
[1]  
Amini S, 2015, NAT MATER, V14, P943, DOI [10.1038/NMAT4309, 10.1038/nmat4309]
[2]   A CRITICAL-EVALUATION OF INDENTATION TECHNIQUES FOR MEASURING FRACTURE-TOUGHNESS .1. DIRECT CRACK MEASUREMENTS [J].
ANSTIS, GR ;
CHANTIKUL, P ;
LAWN, BR ;
MARSHALL, DB .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1981, 64 (09) :533-538
[3]  
Barenblatt G.I., 1962, Adv. Appl. Mech., V7, P55, DOI DOI 10.1016/S0065-2156(08)70121-2
[4]   Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials [J].
Boles, Michael A. ;
Engel, Michael ;
Talapin, Dmitri V. .
CHEMICAL REVIEWS, 2016, 116 (18) :11220-11289
[5]  
Bouville F, 2014, NAT MATER, V13, P508, DOI [10.1038/nmat3915, 10.1038/NMAT3915]
[6]   Relationships between hardness, elastic modulus, and the work of indentation [J].
Cheng, YT ;
Cheng, CM .
APPLIED PHYSICS LETTERS, 1998, 73 (05) :614-616
[7]   Mesocrystals:: Inorganic superstructures made by highly parallel crystallization and controlled alignment [J].
Cölfen, H ;
Antonietti, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (35) :5576-5591
[8]   The Nano-Jackhammer effect in probing near-surface mechanical properties [J].
Cordill, M. J. ;
Lund, M. S. ;
Parker, J. ;
Leighton, C. ;
Nair, A. K. ;
Farkas, D. ;
Moody, N. R. ;
Gerberich, W. W. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2009, 25 (11) :2045-2058
[9]   Geometry of nanoindentation cube-corner cracks observed by FIB tomography: Implication for fracture resistance estimation [J].
Cuadrado, N. ;
Seuba, J. ;
Casellas, D. ;
Anglada, M. ;
Jimenez-Pique, E. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (10) :2949-2955
[10]   Evaluation of fracture toughness of small volumes by means of cube-corner nanoindentation [J].
Cuadrado, N. ;
Casellas, D. ;
Anglada, M. ;
Jimenez-Pique, E. .
SCRIPTA MATERIALIA, 2012, 66 (09) :670-673