On the Dirichlet boundary problem and Hirota equations

被引:0
|
作者
Marshakov, A. [1 ]
Zabrodin, A. [2 ]
机构
[1] PN Lebedev Phys Inst, Theory Dept, ITEP, Leninsky Prospect 53, Moscow 117924, Russia
[2] Inst Biochem Phys, ITEP, Moscow, Russia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the integrable structure of the Dirichlet boundary problem in two dimensions. The solution to the Dirichlet boundary problem for simply-connected case is given through a quasiclassical tau-function, which satisfies the Hirota equations of the dispersionless Toda hierarchy, following from properties of the Dirichlet Green function. We also outline a possible generalization to the case of multiply connected domains related to the multi support solutions of matrix models.
引用
收藏
页码:175 / +
页数:3
相关论文
共 50 条
  • [31] Discontinuous boundary conditions and the Dirichlet problem
    Wiener, Norbert
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1923, 25 (1-4) : 307 - 314
  • [32] HOMOGENIZATION OF THE BOUNDARY VALUE FOR THE DIRICHLET PROBLEM
    Kim, Sunghan
    Lee, Ki-Ahm
    Shahgholian, Henrik
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (12) : 6843 - 6864
  • [33] DIRICHLET PROBLEM IN UNBOUNDED BOUNDARY DOMAIN
    MATARASS.S
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 53 (05): : 362 - 367
  • [34] The Dirichlet problem for the Beltrami equations with sources
    Gutlyanskiĭ V.
    Ryazanov V.
    Nesmelova O.
    Yakubov E.
    Journal of Mathematical Sciences, 2023, 273 (3) : 351 - 376
  • [35] The Dirichlet problem for nonlocal elliptic equations
    Tian, Rongrong
    Wei, Jinlong
    Tang, Yanbin
    APPLICABLE ANALYSIS, 2021, 100 (10) : 2093 - 2107
  • [36] DIRICHLET PROBLEM FOR NONUNIFORMLY ELLIPTIC EQUATIONS
    TRUDINGER, NS
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (03) : 410 - +
  • [37] The Dirichlet problem for elliptic equations in the plane
    Cavaliere, Paola
    Transirico, Maria
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2005, 46 (04): : 751 - 758
  • [38] Dirichlet-boundary value problem for one dimensional nonlinear Schrodinger equations with large initial and boundary data
    Hayashi, Nakao
    Kaikina, Elena I.
    Ogawa, Takayoshi
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (02):
  • [39] DIRICHLET PROBLEM FOR DEGENERATE ELLIPTIC EQUATIONS
    FRIEDMAN, A
    PINSKY, MA
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 186 (459) : 359 - 383
  • [40] ON THE EXTERIOR DIRICHLET PROBLEM FOR HESSIAN EQUATIONS
    Bao, Jiguang
    Li, Haigang
    Li, Yanyan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (12) : 6183 - 6200