A model for fast predicting and optimizing the sensitivity of surface-relief guided mode resonance sensors

被引:29
作者
Lin, Sheng Fu [1 ]
Wang, Chih Ming [2 ]
Tsai, Ya Lun [1 ]
Ding, Ting Jou [1 ]
Yang, Tsung Hsun [1 ]
Chen, Wen Yih [3 ]
Yeh, Song Feng [4 ]
Chang, Jenq Yang [1 ,5 ]
机构
[1] Natl Cent Univ, Dept Opt & Photon, Jhongli 32001, Taiwan
[2] Natl Dong Hwa Univ, Dept Optoelect Engn, Hualien 97401, Taiwan
[3] Natl Cent Univ, Dept Chem & Mat Engn, Jhongli 32001, Taiwan
[4] Taiwan Landseed Hosp, Dept Internal Med, Div Rheumatol Immunol Allergy, Tao Yuan 32449, Taiwan
[5] Natl Cent Univ, Ctr Opt, Jhongli 32001, Taiwan
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2013年 / 176卷
关键词
Optical biosensors; Guided mode resonance device; Bulk sensitivity; Waveguide;
D O I
10.1016/j.snb.2012.02.014
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A modified waveguide model for predicting the sensitivity of surface-relief guided mode resonance (GMR) biosensors is presented. The proposed model is a convenient and fast calculation method compared to the current optical simulation tools such as the rigorous couple wave analysis (RCWA). A systematic and theoretical discussion of the GMR geometric structure and sensitivity of the modified model for biosensing is also presented. For a given GMR material, the theoretical maximum sensitivity can be achieved by choosing the proper geometric structure from the model simulations. A comparison of the GMR biosensor sensitivity respectively calculated by the model and the RCWA method shows good agreement. Finally, a suspending GMR structure with a 4.5-fold increase in sensitivity compared to the traditional surface-relief GMR is proposed. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1197 / 1203
页数:7
相关论文
共 21 条
[1]   Use of optical biosensor technology to study immunological cross-reactivity between different sulfonamide drugs [J].
Ahmad, A ;
Ramakrishnan, A ;
McLean, MA ;
Li, DB ;
Rock, MT ;
Karim, A ;
Breau, AP .
ANALYTICAL BIOCHEMISTRY, 2002, 300 (02) :177-184
[2]   Sensitivity model for predicting photonic crystal biosensor performance [J].
Block, Ian D. ;
Ganesh, Nikhil ;
Lu, Meng ;
Cunningham, Brian T. .
IEEE SENSORS JOURNAL, 2008, 8 (3-4) :274-280
[3]   Photonic crystal optical biosensor incorporating structured low-index porous dielectric [J].
Block, Ian D. ;
Chan, Leo L. ;
Cunningham, Brian T. .
SENSORS AND ACTUATORS B-CHEMICAL, 2006, 120 (01) :187-193
[4]   Label-free assays on the BIND system [J].
Cunningham, BT ;
Li, P ;
Schulz, S ;
Lin, B ;
Baird, C ;
Gerstenmaier, J ;
Genick, C ;
Wang, F ;
Fine, E ;
Laing, L .
JOURNAL OF BIOMOLECULAR SCREENING, 2004, 9 (06) :481-490
[5]   Determination of the refractive index increments of small molecules for correction of surface plasmon resonance data [J].
Davis, TM ;
Wilson, WD .
ANALYTICAL BIOCHEMISTRY, 2000, 284 (02) :348-353
[6]   Silicon-on-Insulator microring resonator for sensitive and label-free biosensing [J].
De Vos, Katrien ;
Bartolozzi, Irene ;
Schacht, Etienne ;
Bienstman, Peter ;
Baets, Roel .
OPTICS EXPRESS, 2007, 15 (12) :7610-7615
[7]   Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal [J].
Dobbs, Dennis W. ;
Gershkovich, Irena ;
Cunningham, Brian T. .
APPLIED PHYSICS LETTERS, 2006, 89 (12)
[8]   Sensitivity enhancement in photonic crystal slab biosensors [J].
El Beheiry, Mohamed ;
Liu, Victor ;
Fan, Shanhui ;
Levi, Ofer .
OPTICS EXPRESS, 2010, 18 (22) :22702-22714
[9]   Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer [J].
El-Sayed, IH ;
Huang, XH ;
El-Sayed, MA .
NANO LETTERS, 2005, 5 (05) :829-834
[10]   Present and future of surface plasmon resonance biosensors [J].
Homola, J .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2003, 377 (03) :528-539