Optical solitons in the generalized space-time fractional cubic-quintic nonlinear Schrodinger equation with a PT-symmetric potential

被引:14
作者
Manikandan, K. [1 ]
Aravinthan, D. [1 ]
Sudharsan, J. B. [1 ]
Vadivel, R. [2 ]
机构
[1] Chennai Inst Technol, Ctr Computat Modeling, Chennai 600069, Tamilnadu, India
[2] Phuket Rajabhat Univ, Fac Sci & Technol, Dept Math, Phuket 83000, Thailand
来源
OPTIK | 2022年 / 271卷
关键词
Space-time fractional nonlinear Schr?dinger; equation; Fractional calculus; Fractal derivatives; Optical soliton; Cubic-quintic nonlinearity; PT-symmetric potential; LAW; PERTURBATION;
D O I
10.1016/j.ijleo.2022.170105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the presence of complexified parity reflection-time reversal (PT)-symmetric Scarff-II po-tential, we consider the generalized space-time fractional cubic-quintic nonlinear Schrodinger (FCQNLS) equation. By implementing fractal derivative variable transformation, we derive the fractional optical soliton solutions for the considered model. We consider two distinct forms of cubic-quintic nonlinearities, such as (i) focusing cubic-focusing quintic and (ii) defocusing cubic-focusing quintic for deriving the fractional optical soliton solutions. We investigate how modifying the temporal and space fractional-order parameters affects these fractional solitons. Our observations reveal that the rise in fractional-order parameters leads to the desired soliton profiles. We also examine further the effects of potential strengths on the fractional soliton profiles that are obtained.
引用
收藏
页数:10
相关论文
共 63 条
[21]   On gauge transformations of Backlund type and higher order nonlinear Schrodinger equations [J].
Goldin, GA ;
Shtelen, VM .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (05) :2180-2186
[22]   Highly dispersive optical solitons in birefringent fibres with non-local form of nonlinear refractive index: Laplace-Adomian decomposition [J].
Gonzalez-Gaxiola, O. ;
Biswas, Anjan ;
Yildirim, Yakup ;
Alshehri, Hashim M. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2022, 23 (02) :68-76
[23]   Dissipative optical solitons in asymmetric Rosen-Morse potential [J].
Hari, K. ;
Manikandan, K. ;
Sankaranarayanan, R. .
PHYSICS LETTERS A, 2020, 384 (04)
[24]   An historical review of application of optical solitons for high speed communications [J].
Hasegawa, A .
CHAOS, 2000, 10 (03) :475-485
[25]   Fractal calculus and its geometrical explanation [J].
He, Ji-Huan .
RESULTS IN PHYSICS, 2018, 10 :272-276
[26]   A Tutorial Review on Fractal Spacetime and Fractional Calculus [J].
He, Ji-Huan .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (11) :3698-3718
[27]   A new definition of fractional derivative [J].
Khalil, R. ;
Al Horani, M. ;
Yousef, A. ;
Sababheh, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 264 :65-70
[28]   Solitons in PT-symmetric potential with competing nonlinearity [J].
Khare, Avinash ;
Al-Marzoug, S. M. ;
Bahlouli, Hocine .
PHYSICS LETTERS A, 2012, 376 (45) :2880-2886
[29]   On certain new exact solutions of a diffusive predator-prey system [J].
Kraenkel, R. A. ;
Manikandan, K. ;
Senthilvelan, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (05) :1269-1274
[30]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108