Optical solitons in the generalized space-time fractional cubic-quintic nonlinear Schrodinger equation with a PT-symmetric potential

被引:14
作者
Manikandan, K. [1 ]
Aravinthan, D. [1 ]
Sudharsan, J. B. [1 ]
Vadivel, R. [2 ]
机构
[1] Chennai Inst Technol, Ctr Computat Modeling, Chennai 600069, Tamilnadu, India
[2] Phuket Rajabhat Univ, Fac Sci & Technol, Dept Math, Phuket 83000, Thailand
来源
OPTIK | 2022年 / 271卷
关键词
Space-time fractional nonlinear Schr?dinger; equation; Fractional calculus; Fractal derivatives; Optical soliton; Cubic-quintic nonlinearity; PT-symmetric potential; LAW; PERTURBATION;
D O I
10.1016/j.ijleo.2022.170105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the presence of complexified parity reflection-time reversal (PT)-symmetric Scarff-II po-tential, we consider the generalized space-time fractional cubic-quintic nonlinear Schrodinger (FCQNLS) equation. By implementing fractal derivative variable transformation, we derive the fractional optical soliton solutions for the considered model. We consider two distinct forms of cubic-quintic nonlinearities, such as (i) focusing cubic-focusing quintic and (ii) defocusing cubic-focusing quintic for deriving the fractional optical soliton solutions. We investigate how modifying the temporal and space fractional-order parameters affects these fractional solitons. Our observations reveal that the rise in fractional-order parameters leads to the desired soliton profiles. We also examine further the effects of potential strengths on the fractional soliton profiles that are obtained.
引用
收藏
页数:10
相关论文
共 63 条
[11]   Symmetric and antisymmetric solitons in the fractional nonlinear schro•dinger equation with saturable nonlinearity and PT-symmetric potential: Stability and dynamics [J].
Bo, Wen-Bo ;
Liu, Wei ;
Wang, Yue-Yue .
OPTIK, 2022, 255
[12]   Lie symmetry analysis for cubic-quartic nonlinear Schrodinger's equation [J].
Bonsal, Anupma ;
Biswas, Anjan ;
Zhou, Qin ;
Babatin, M. M. .
OPTIK, 2018, 169 :12-15
[13]   New exact solutions of Burgers' type equations with conformable derivative [J].
Cenesiz, Yucel ;
Baleanu, Dumitru ;
Kurt, Ali ;
Tasbozan, Orkun .
WAVES IN RANDOM AND COMPLEX MEDIA, 2017, 27 (01) :103-116
[14]   Time-space fabric underlying anomalous diffusion [J].
Chen, W .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :923-929
[15]   Anomalous diffusion modeling by fractal and fractional derivatives [J].
Chen, Wen ;
Sun, Hongguang ;
Zhang, Xiaodi ;
Korosak, Dean .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1754-1758
[16]   Combined optical soliton solutions of a (1+1)-dimensional time fractional resonant cubic-quintic nonlinear Schrodinger equation in weakly nonlocal nonlinear media [J].
Chen, Yi-Xiang .
OPTIK, 2020, 203
[17]   Hollow Core Optical Fibers for Industrial Ultra Short Pulse Laser Beam Delivery Applications [J].
Eilzer, Sebastian ;
Wedel, Bjoern .
FIBERS, 2018, 6 (04)
[18]   Optical solitons in (2+1)-Dimensions with Kundu-Mukherjee-Naskar equation by extended trial function scheme [J].
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Biswas, Anjan ;
Belic, Milivoj R. .
CHINESE JOURNAL OF PHYSICS, 2019, 57 :72-77
[19]   Abundant solitary wave solutions to an extended nonlinear Schrodinger's equation with conformable derivative using an efficient integration method [J].
Ghanbari, Behzad ;
Nisar, Kottakkaran Sooppy ;
Aldhaifallah, Mujahed .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[20]   Solitons of (1+1)D cubic-quintic nonlinear Schrodinger equation with PT - symmetric potentials [J].
Goksel, Izzet ;
Antar, Nalan ;
Bakirtas, Ilkay .
OPTICS COMMUNICATIONS, 2015, 354 :277-285