Optical solitons in the generalized space-time fractional cubic-quintic nonlinear Schrodinger equation with a PT-symmetric potential

被引:14
作者
Manikandan, K. [1 ]
Aravinthan, D. [1 ]
Sudharsan, J. B. [1 ]
Vadivel, R. [2 ]
机构
[1] Chennai Inst Technol, Ctr Computat Modeling, Chennai 600069, Tamilnadu, India
[2] Phuket Rajabhat Univ, Fac Sci & Technol, Dept Math, Phuket 83000, Thailand
来源
OPTIK | 2022年 / 271卷
关键词
Space-time fractional nonlinear Schr?dinger; equation; Fractional calculus; Fractal derivatives; Optical soliton; Cubic-quintic nonlinearity; PT-symmetric potential; LAW; PERTURBATION;
D O I
10.1016/j.ijleo.2022.170105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the presence of complexified parity reflection-time reversal (PT)-symmetric Scarff-II po-tential, we consider the generalized space-time fractional cubic-quintic nonlinear Schrodinger (FCQNLS) equation. By implementing fractal derivative variable transformation, we derive the fractional optical soliton solutions for the considered model. We consider two distinct forms of cubic-quintic nonlinearities, such as (i) focusing cubic-focusing quintic and (ii) defocusing cubic-focusing quintic for deriving the fractional optical soliton solutions. We investigate how modifying the temporal and space fractional-order parameters affects these fractional solitons. Our observations reveal that the rise in fractional-order parameters leads to the desired soliton profiles. We also examine further the effects of potential strengths on the fractional soliton profiles that are obtained.
引用
收藏
页数:10
相关论文
共 63 条
[1]   Fundamental stochastic solutions for the conformable fractional NLSE with spatiotemporal dispersion via exponential distribution [J].
Abdelrahman, Mahmoud A. E. ;
Sohaly, M. A. ;
Alharbi, Yousef F. .
PHYSICA SCRIPTA, 2021, 96 (12)
[2]   Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme [J].
Al Qarni, A. A. ;
Bodaqah, A. M. ;
Mohammed, A. S. H. F. ;
Alshaery, A. A. ;
Bakodah, H. O. ;
Biswas, Anjan .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2022, 23 (04) :228-242
[3]  
[Anonymous], 2010, Communications in Fractional Calculus
[4]   Analysis of time-fractional Hunter-Saxton equation: a model of neumatic liquid crystal [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN PHYSICS, 2016, 14 (01) :145-149
[5]   New properties of conformable derivative [J].
Atangana, Abdon ;
Baleanu, Dumitru ;
Alsaedi, Ahmed .
OPEN MATHEMATICS, 2015, 13 :889-898
[6]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[7]   Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle [J].
Biswas, Anjan ;
Edoki, Joseph ;
Guggilla, Padmaja ;
Khan, Salam ;
Alzahrani, Abdullah Khamis ;
Belic, Milivoj R. .
UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (03) :123-127
[8]   Highly dispersive optical solitons with cubic-quintic-septic law by F-expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 182 :897-906
[9]   Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes [J].
Biswas, Anjan ;
Rezazadeh, Hadi ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa ;
Ekici, Mehmet ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 165 :288-294
[10]   Symmetry breaking of solitons in the PT-symmetric nonlinear Schrodinger equation with the cubic-quintic competing saturable nonlinearity [J].
Bo, Wen-Bo ;
Wang, Ru-Ru ;
Liu, Wei ;
Wang, Yue-Yue .
CHAOS, 2022, 32 (09)