Density improvement of silicon nanocrystals embedded in silicon carbide matrix deposited by hot-wire CVD

被引:7
作者
Bi, Kaifeng [1 ]
Liu, Yanhong [1 ]
Liu, Kun [1 ]
Jiang, Jiwen [1 ]
Peng, Wei [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Engn, Dalian 116024, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Si nanocrystals embedded in SiC; HWCVD; Nucleation density; NUCLEATION; HYDROGEN; SI; GROWTH;
D O I
10.1016/j.surfcoat.2013.04.021
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thin films of silicon nanocrystals (Si-NC) embedded in silicon carbide (SiC) matrix (Si-NC:SiC) were developed by using hot-wire chemical vapor deposition (HWCVD) from silane (SiH4) and methane (CH4) mixture gases diluted by hydrogen (H-2). This method avoids the co-precipitation of Si-NCs and SiC-NCs from a high-temperature annealing process. According to the classical theory of nucleation, this paper experimentally investigates the possibilities to increase the density of Si-NCs by optimizing two processing parameters (ratio of SiH4 to CH4 and working gas pressure). Using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR), we characterized the grain size, crystal volume fraction, topography and bond configurations of as-deposited films. The experimental results demonstrate that increasing the working gas pressure can lead to higher density of Si-NCs, while increasing the ratio of SiH4 to CH4 can only increase the grain size, which is consistent with the mechanism of nucleation and growth of Si-NCs. This method can be used to improve the density of Si-NCs embedded in SiC matrix deposited by CVD without high-temperature annealing process. (C) 2013 The Authors. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:148 / 153
页数:6
相关论文
共 31 条
[1]   Silicon quantum dot nucleation on Si3N4, SiO2 and SiOxNy substrates for nanoelectronic devices [J].
Baron, T ;
Martin, F ;
Mur, P ;
Wyon, C ;
Dupuy, M .
JOURNAL OF CRYSTAL GROWTH, 2000, 209 (04) :1004-1008
[2]   Microcrystalline to nanocrystalline silicon phase transition in hydrogenated silicon-carbon alloy films [J].
Basa, D. K. ;
Ambrosone, G. ;
Coscia, U. .
NANOTECHNOLOGY, 2008, 19 (41)
[3]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[4]   Ag nanoparticles/PPV composite nanofibers with high and sensitive opto-electronic response [J].
Chen, Jinfeng ;
Yang, Peipei ;
Wang, Chunjiao ;
Zhan, Sumei ;
Zhang, Lianji ;
Huang, Zonghao ;
Li, Wenwen ;
Wang, Cheng ;
Jiang, Zijiang ;
Shao, Chen .
NANOSCALE RESEARCH LETTERS, 2011, 6
[5]   Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation [J].
Cheng, Qijin ;
Tam, Eugene ;
Xu, Shuyan ;
Ostrikov, Kostya .
NANOSCALE, 2010, 2 (04) :594-600
[6]   Single-step, rapid low-temperature synthesis of Si quantum dots embedded in an amorphous SiC matrix in high-density reactive plasmas [J].
Cheng, Qijin ;
Xu, Shuyan ;
Ostrikov, Kostya .
ACTA MATERIALIA, 2010, 58 (02) :560-569
[7]   Rapid, low-temperature synthesis of nc-Si in high-density, non-equilibrium plasmas: enabling nanocrystallinity at very low hydrogen dilution [J].
Cheng, Qijin ;
Xu, Shuyan ;
Ostrikov, Kostya .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (29) :5134-5140
[8]   Effective Control of Nanostructured Phases in Rapid, Room-Temperature Synthesis of Nanocrystalline Si in High-Density Plasmas [J].
Cheng, Qijin ;
Xu, Shuyan ;
Huang, Shiyong ;
Ostrikov, Kostya .
CRYSTAL GROWTH & DESIGN, 2009, 9 (06) :2863-2867
[9]   High-rate, low-temperature synthesis of composition controlled hydrogenated amorphous silicon carbide films in low-frequency inductively coupled plasmas [J].
Cheng, Qijin ;
Xu, S. ;
Long, J. D. ;
Ni, Z. H. ;
Rider, A. E. ;
Ostrikov, K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (05)
[10]   Homogeneous nanocrystalline cubic silicon carbide films prepared by inductively coupled plasma chemical vapor deposition [J].
Cheng, Qijin ;
Xu, S. ;
Long, Jidong ;
Huang, Shiyong ;
Guo, Jun .
NANOTECHNOLOGY, 2007, 18 (46)