Learning deep representations of enzyme thermal adaptation

被引:22
作者
Li, Gang [1 ]
Buric, Filip [1 ,2 ]
Zrimec, Jan [1 ]
Viknander, Sandra [1 ]
Nielsen, Jens [1 ,3 ,4 ]
Zelezniak, Aleksej [5 ]
Engqvist, Martin K. M. [1 ,6 ,7 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, Gothenburg, Sweden
[2] Natl Inst Biol, Dept Biotechnol & Syst Biol, Ljubljana, Slovenia
[3] BioInnovat Inst, Copenhagen, Denmark
[4] Vilnius Univ, Inst Biotechnol, Life Sci Ctr, Vilnius, Lithuania
[5] Kings Coll London, Randall Ctr Cell & Mol Biophys, New Hunts House Guys Campus, London SE1 1UL, England
[6] Enginzyme AB, Stockholm, Sweden
[7] Chalmers Univ Technol, Dept Biol & Biol Engn, Kemivagen 10, SE-41296 Gothenburg, Sweden
基金
欧盟地平线“2020”; 瑞典研究理事会;
关键词
bioinformatics; deep neural networks; enzyme catalytic temperatures; optimal growth temperatures; protein thermostability; transfer learning; PROTEIN; PROKARYOTES; BIOLOGY; GROWTH;
D O I
10.1002/pro.4480
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Temperature is a fundamental environmental factor that shapes the evolution of organisms. Learning thermal determinants of protein sequences in evolution thus has profound significance for basic biology, drug discovery, and protein engineering. Here, we use a data set of over 3 million BRENDA enzymes labeled with optimal growth temperatures (OGTs) of their source organisms to train a deep neural network model (DeepET). The protein-temperature representations learned by DeepET provide a temperature-related statistical summary of protein sequences and capture structural properties that affect thermal stability. For prediction of enzyme optimal catalytic temperatures and protein melting temperatures via a transfer learning approach, our DeepET model outperforms classical regression models trained on rationally designed features and other deep-learning-based representations. DeepET thus holds promise for understanding enzyme thermal adaptation and guiding the engineering of thermostable enzymes.
引用
收藏
页数:14
相关论文
共 74 条
[41]   Machine Learning Applied to Predicting Microorganism Growth Temperatures and Enzyme Catalytic Optima [J].
Li, Gang ;
Rabe, Kersten S. ;
Nielsen, Jens ;
Engqvist, Martin K. M. .
ACS SYNTHETIC BIOLOGY, 2019, 8 (06) :1411-1420
[42]   Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences [J].
Li, Weizhong ;
Godzik, Adam .
BIOINFORMATICS, 2006, 22 (13) :1658-1659
[43]   Thermal proteome profiling in bacteria: probing protein state in vivo [J].
Mateus, Andre ;
Bobonis, Jacob ;
Kurzawa, Nils ;
Stein, Frank ;
Helm, Dominic ;
Hevler, Johannes ;
Typas, Athanasios ;
Savitski, Mikhail M. .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (07)
[44]  
McInnes L, 2020, Arxiv, DOI arXiv:1802.03426
[45]   Protein transfer learning improves identification of heat shock protein families [J].
Min, Seonwoo ;
Kim, HyunGi ;
Lee, Byunghan ;
Yoon, Sungroh .
PLOS ONE, 2021, 16 (05)
[46]   Protein thermostability engineering [J].
Modarres, H. Pezeshgi ;
Mofrad, M. R. ;
Sanati-Nezhad, A. .
RSC ADVANCES, 2016, 6 (116) :115252-115270
[47]  
Nair V., 2010, P 27 INT C MACHINE L, P807, DOI DOI 10.5555/3104322.3104425
[48]   Protein Thermostability Is Owing to Their Preferences to Non-Polar Smaller Volume Amino Acids, Variations in Residual Physico-Chemical Properties and More Salt-Bridges [J].
Panja, Anindya Sundar ;
Bandopadhyay, Bidyut ;
Maiti, Smarajit .
PLOS ONE, 2015, 10 (07)
[49]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[50]   Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates [J].
Pesciullesi, Giorgio ;
Schwaller, Philippe ;
Laino, Teodoro ;
Reymond, Jean-Louis .
NATURE COMMUNICATIONS, 2020, 11 (01)