BILINEAR HILBERT TRANSFORMS ALONG CURVES I: THE MONOMIAL CASE

被引:34
作者
Li, Xiaochun [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
bilinear Hilbert transform along curves; OSCILLATORY INTEGRALS;
D O I
10.2140/apde.2013.6.197
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish an L-2 x L-2 to L-1 estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multilinear oscillatory integrals.
引用
收藏
页码:197 / 220
页数:24
相关论文
共 19 条
[1]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[2]  
Christ M, 2005, DUKE MATH J, V130, P321
[3]   HILBERT-TRANSFORMS ALONG CURVES .1. NILPOTENT GROUPS [J].
CHRIST, M .
ANNALS OF MATHEMATICS, 1985, 122 (03) :575-596
[4]   Singular and maximal Radon transforms: Analysis and geometry [J].
Christ, M ;
Nagel, A ;
Stein, EM ;
Wainger, S .
ANNALS OF MATHEMATICS, 1999, 150 (02) :489-577
[5]   HILBERT-TRANSFORMS ALONG CURVES .2. A FLAT CASE [J].
CHRIST, M .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) :887-894
[6]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[7]   SINGULAR INTEGRALS WITH MIXED HOMOGENEITY [J].
FABES, EB ;
RIVIERE, NM .
STUDIA MATHEMATICA, 1966, 27 (01) :19-&
[8]  
Furstenberg H., 1990, The legacy of John von Neumann, V50, P43
[9]   A new proof of Szemeredi's theorem for arithmetic progressions of length four [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (03) :529-551
[10]   OSCILLATORY INTEGRALS AND MULTIPLIERS ON FLP [J].
HORMANDER, L .
ARKIV FOR MATEMATIK, 1973, 11 (01) :1-11