Influence of graphene synthesizing techniques on the photocatalytic performance of graphene-TiO2 nanocomposites

被引:40
作者
Sellappan, Raja [1 ]
Sun, Jie [2 ]
Galeckas, Augustinas [3 ]
Lindvall, Niclas [2 ]
Yurgens, August [2 ]
Kuznetsov, Andrej Yu [3 ]
Chakarov, Dinko [1 ]
机构
[1] Chalmers, Dept Appl Phys, Gothenburg, Sweden
[2] Chalmers, Dept Microtechnol & Nanosci, Gothenburg, Sweden
[3] Univ Oslo, Dept Phys, Ctr Mat Sci & Nanotechnol, N-0318 Oslo, Norway
关键词
CARBON NANOTUBES; TIO2; NANOPARTICLES; HYBRID MATERIALS; OXIDE; COMPOSITES; NANOSHEETS; REDUCTION; FILMS; WATER; PHOTOLUMINESCENCE;
D O I
10.1039/c3cp52457d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Model photocatalysts composed of TiO2-graphene nanocomposites are prepared to address the effect of graphene quality on their photocatalytic performance. Graphene is synthesized by catalyst-assisted chemical vapor deposition (CVD), catalyst-free CVD and solution processing methods. TiO2 is prepared by reactive magnetron sputtering and subsequent annealing. Fabricated model photocatalysts have different morphology and physical properties, as revealed using spectrophotometry, atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence, and four-probe electrical measurements. All graphene-containing composites have significantly higher photocatalytic activity compared to bare TiO2 films in the gas phase methanol photooxidation tests. Their activity is proportional to the electrical conductivity and surface roughness of the respective carbon structure, which in turn depends on the preparation methods. The mechanisms of enhancement are further assessed by comparison with the performance of reference TiO2-graphitic-carbon and TiO2-Au thin films.
引用
收藏
页码:15528 / 15537
页数:10
相关论文
共 64 条
  • [11] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [12] ELECTRON DEFICIENCY OF THE FULLERENES
    FOWLER, PW
    CEULEMANS, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (02) : 508 - 510
  • [13] The rise of graphene
    Geim, A. K.
    Novoselov, K. S.
    [J]. NATURE MATERIALS, 2007, 6 (03) : 183 - 191
  • [14] Doping graphene with metal contacts
    Giovannetti, G.
    Khomyakov, P. A.
    Brocks, G.
    Karpan, V. M.
    van den Brink, J.
    Kelly, P. J.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (02)
  • [15] ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS
    HOFFMANN, MR
    MARTIN, ST
    CHOI, WY
    BAHNEMANN, DW
    [J]. CHEMICAL REVIEWS, 1995, 95 (01) : 69 - 96
  • [16] Holzel A., 1979, SOLID SURFACE PHYS, V85, P1
  • [17] PREPARATION OF GRAPHITIC OXIDE
    HUMMERS, WS
    OFFEMAN, RE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) : 1339 - 1339
  • [18] Enhanced Photocatalytic Activity and Electron Transfer Mechanisms of Graphene/TiO2 with Exposed {001} Facets
    Jiang, Baojiang
    Tian, Chungui
    Pan, Qingjiang
    Jiang, Zheng
    Wang, Jian-Qiang
    Yan, Wensheng
    Fu, Honggang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (48) : 23718 - 23725
  • [19] Efficient photochemical water splitting by a chemically modified n-TiO2 2
    Khan, SUM
    Al-Shahry, M
    Ingler, WB
    [J]. SCIENCE, 2002, 297 (5590) : 2243 - 2245
  • [20] Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions
    Kongkanand, Anusorn
    Kamat, Prashant V.
    [J]. ACS NANO, 2007, 1 (01) : 13 - 21