A Robust Feature Extraction and Selection Method for the Recognition of Lymphocytes versus Acute Lymphoblastic Leukemia

被引:35
作者
Madhloom, Hayan T. [1 ]
Kareem, Sameem Abdul [1 ]
Ariffin, Hany
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Dept Artificial Intelligence, Kuala Lumpur, Malaysia
来源
2012 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE APPLICATIONS AND TECHNOLOGIES (ACSAT) | 2012年
关键词
Shape Features; Texture Features; Image Segmentation; Leukemia diagnosis; AUTOMATED MICROSCOPY; RESISTANCE; CHILDREN;
D O I
10.1109/ACSAT.2012.62
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An essential part of the diagnosis and treatment of leukemia is the visual examination of the patient's peripheral blood smear under the microscope. Morphological changes in the white blood cells are commonly used to determine the nature of the malignant cells, namely blasts. Manual techniques are labor intensive slow, subjected to error and costly. A computerized system can be used as an aiding tool for the specialist in order to improve and accelerate the morphological analysis process. This paper presents and application of feature extraction, selection and cell classification to the recognition and differentiation of normal lymphocytes versus abnormal lymphoblast cells on the image of peripheral blood smears. This is considered as a very useful procedure in the initial treatment process of leukemia patients. A computerized recognition system has been developed, and the results of its numerical verification are presented and discussed. The methodology demonstrates that the application of pattern recognition is a powerful tool for the differentiation of normal lymphocytes and acute lymphoblastic leukemia, leading to the improvement in the early effective treatment for leukemia.
引用
收藏
页码:330 / 335
页数:6
相关论文
共 22 条
[1]  
[Anonymous], 2006, SEER cancer statistics review, 1975-2003
[2]  
Bain B.J, 1991, LEUKEMIA DIAGNOSIS, P2
[3]   Examination of peripheral blood films using automated microscopy; evaluation of Diffmaster Octavia and Cellavision DM96 [J].
Ceelie, H. ;
Dinkelaar, R. B. ;
van Gelder, W. .
JOURNAL OF CLINICAL PATHOLOGY, 2007, 60 (01) :72-79
[4]   Patient stratification based on prednisolone-vincristine-asparaginase resistance profiles in children with acute lymphoblastic leukemia [J].
Den Boer, ML ;
Harms, DO ;
Pieters, R ;
Kazemier, KM ;
Göbel, U ;
Körholz, D ;
Graubner, U ;
Haas, RJ ;
Jorch, N ;
Spaar, HJ ;
Kaspers, GJL ;
Kamps, WA ;
Van der Does-Van den Berg, A ;
Van Wering, ER ;
Veerman, AJP ;
Janka-Schaub, GE .
JOURNAL OF CLINICAL ONCOLOGY, 2003, 21 (17) :3262-3268
[5]  
Farag A, 2003, Proceedings of the 46th IEEE International Midwest Symposium on Circuits & Systems, Vols 1-3, P701
[6]   In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia [J].
Hongo, T ;
Yajima, S ;
Sakurai, M ;
Horikoshi, Y ;
Hanada, R .
BLOOD, 1997, 89 (08) :2959-2965
[7]   Prednisolone resistance in childhood acute lymphoblastic leukemia: Vitro-vivo correlations and cross-resistance to other drugs [J].
Kaspers, GJL ;
Pieters, R ;
Van Zantwijk, CH ;
Van Wering, ER ;
Van der Does-Van den Berg, A ;
Veerman, AJP .
BLOOD, 1998, 92 (01) :259-266
[8]   Clinical outcome of patients with childhood acute lymphoblastic leukaemia and an initial leukaemic blood blast count of less than 1000 per microliter [J].
Lauten, M ;
Stanulla, M ;
Zimmermann, M ;
Welte, K ;
Riehm, H ;
Schrappe, M .
KLINISCHE PADIATRIE, 2001, 213 (04) :169-174
[9]   An automated white blood cell nucleus localization and segmentation using image arithmetic and automatic threshold [J].
Madhloom H.T. ;
Kareem S.A. ;
Ariffin H. ;
Zaidan A.A. ;
Alanazi H.O. ;
Zaidan B.B. .
Journal of Applied Sciences, 2010, 10 (11) :959-966
[10]   An Image Processing Application for the Localization and Segmentation of Lymphoblast Cell Using Peripheral Blood Images [J].
Madhloom, Hayan T. ;
Kareem, Sameem Abdul ;
Ariffin, Hany .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (04) :2149-2158