Deciphering the reading of the genetic code by near-cognate tRNA

被引:41
作者
Blanchet, Sandra [1 ,2 ]
Cornu, David [1 ]
Hatin, Isabelle [1 ]
Grosjean, Henri [1 ]
Bertin, Pierre [1 ]
Namy, Olivier [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, CNRS,Inst Integrat Biol Cell I2BC, Commissariat Energie Atom & Energies Alternat, F-91198 Gif Sur Yvette, France
[2] Max Planck Inst Biophys Chem, Dept Phys Biochem, D-37077 Gottingen, Germany
关键词
translation fidelity; stop codon readthrough; tRNA modification; genetic code; near-cognate tRNA; WOBBLE URIDINE MODIFICATIONS; SACCHAROMYCES-CEREVISIAE; STRUCTURAL INSIGHTS; ANTICODON; PSEUDOURIDINE; TRANSLATION; RIBOSOME; POSITION; CODONS; BASE;
D O I
10.1073/pnas.1715578115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Some codons of the genetic code can be read not only by cognate, but also by near-cognate tRNAs. This flexibility is thought to be conferred mainly by a mismatch between the third base of the codon and the first of the anticodon (the so-called "wobble" position). However, this simplistic explanation underestimates the importance of nucleotide modifications in the decoding process. Using a system in which only near-cognate tRNAs can decode a specific codon, we investigated the role of six modifications of the anticodon, or adjacent nucleotides, of the tRNAs specific for Tyr, Gln, Lys, Trp, Cys, and Arg in Saccharomyces cerevisiae. Modifications almost systematically rendered these tRNAs able to act as near-cognate tRNAs at stop codons, even though they involve noncanonical base pairs, without markedly affecting their ability to decode cognate or near-cognate sense codons. These findings reveal an important effect of modifications to tRNA decoding with implications for understanding the flexibility of the genetic code.
引用
收藏
页码:3018 / 3023
页数:6
相关论文
共 40 条
[1]  
Agris Paul F, 2017, Enzymes, V41, P1, DOI 10.1016/bs.enz.2017.03.005
[2]   Genome-wide Translational Changes Induced by the Prion [PSI+] [J].
Baudin-Baillieu, Agnes ;
Legendre, Rachel ;
Kuchly, Claire ;
Hatin, Isabelle ;
Demais, Stephane ;
Mestdagh, Claire ;
Gautheret, Daniel ;
Namy, Olivier .
CELL REPORTS, 2014, 8 (02) :438-447
[3]   The Saccharomyces cerevisiae U2 snRNA:pseudouridine-synthase Pus7p is a novel multisite-multisubstrate RNA:Ψ-synthase also acting on tRNAs [J].
Behm-Ansmant, I ;
Urban, A ;
Ma, XJ ;
Yu, YT ;
Motorin, Y ;
Branlant, C .
RNA, 2003, 9 (11) :1371-1382
[4]   New insights into the incorporation of natural suppressor tRNAs at stop codons in Saccharomyces cerevisiae [J].
Blanchet, Sandra ;
Cornu, David ;
Argentini, Manuela ;
Namy, Olivier .
NUCLEIC ACIDS RESEARCH, 2014, 42 (15) :10061-10072
[5]   Stabilization of RNA stacking by pseudouridine [J].
Davis, DR .
NUCLEIC ACIDS RESEARCH, 1995, 23 (24) :5020-5026
[6]   New structural insights into the decoding mechanism: Translation infidelity via a G.U pair with Watson-Crick geometry [J].
Demeshkina, Natalia ;
Jenner, Lasse ;
Westhof, Eric ;
Yusupov, Marat ;
Yusupova, Gulnara .
FEBS LETTERS, 2013, 587 (13) :1848-1857
[7]   A new understanding of the decoding principle on the ribosome [J].
Demeshkina, Natalia ;
Jenner, Lasse ;
Westhof, Eric ;
Yusupov, Marat ;
Yusupova, Gulnara .
NATURE, 2012, 484 (7393) :256-U146
[8]   ISOLATION AND CHARACTERIZATION OF MOD5, A GENE REQUIRED FOR ISOPENTENYLATION OF CYTOPLASMIC AND MITOCHONDRIAL TRANSFER-RNAS OF SACCHAROMYCES-CEREVISIAE [J].
DIHANICH, ME ;
NAJARIAN, D ;
CLARK, R ;
GILLMAN, EC ;
MARTIN, NC ;
HOPPER, AK .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (01) :177-184
[9]   An integrated, structure- and energy-based view of the genetic code [J].
Grosjean, Henri ;
Westhof, Eric .
NUCLEIC ACIDS RESEARCH, 2016, 44 (17) :8020-8040
[10]   Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes [J].
Grosjean, Henri ;
de Crecy-Lagard, Valerie ;
Marck, Christian .
FEBS LETTERS, 2010, 584 (02) :252-264