The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet

被引:50
|
作者
Chess, David J. [2 ]
Xu, Wenhong [1 ]
Khairallah, Ramzi [1 ]
O'Shea, Karen M. [3 ]
Kop, Willem J. [1 ]
Azimzadeh, Agnes M. [4 ]
Stanley, William C. [1 ,2 ]
机构
[1] Univ Maryland, Dept Med, Div Cardiol, Baltimore, MD 21201 USA
[2] Case Western Reserve Univ, Sch Med, Dept Physiol & Biophys, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Sch Med, Dept Nutr, Cleveland, OH 44106 USA
[4] Univ Maryland, Dept Surg, Div Cardiol, Baltimore, MD 21201 USA
关键词
antioxidants; myocardial oxidative damage; systolic dysfunction;
D O I
10.1152/ajpheart.00563.2008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Chess DJ, Xu W, Khairallah R, O'Shea KM, Kop WJ, Azimzadeh AM, Stanley WC. The antioxidant tempol attenuates pressure overload-induced cardiac hypertrophy and contractile dysfunction in mice fed a high-fructose diet. Am J Physiol Heart Circ Physiol 295: H2223-H2230, 2008; doi: 10.1152/ajpheart.00563.2008.We have previously shown that high-sugar diets increase mortality and left ventricular (LV) dysfunction during pressure overload. The mechanisms behind these diet-induced alterations are unclear but may involve increased oxidative stress in the myocardium. The present study examined whether high-fructose feeding increased myocardial oxidative damage and exacerbated systolic dysfunction after transverse aortic constriction (TAC) and if this effect could be attenuated by treatment with the antioxidant tempol. Immediately after surgery, TAC and sham mice were assigned to a high-starch diet (58% of total energy intake as cornstarch and 10% fat) or high-fructose diet (61% fructose and 10% fat) with or without the addition of tempol [0.1% (wt/wt) in the chow] and maintained on the treatment for 8 wk. In response to TAC, fructose-fed mice had greater cardiac hypertrophy (55.1% increase in the heart weight-to-tibia length ratio) than starch-fed mice (22.3% increase in the heart weight-to-tibia length ratio). Treatment with tempol significantly attenuated cardiac hypertrophy in fructose-fed TAC mice (18.3% increase in the heart weight-to-tibia ratio). Similarly, fructose-fed TAC mice had a decreased LV area of ;fractional shortening (from 38 +/- 2% in sham to 22 +/- 4% in TAC), which was prevented by tempol treatment (33 +/- 3%). Markers of lipid peroxidation in fructose-fed TAC hearts were also blunted by tempol. In conclusion, tempol significantly blunted markers of cardiac hypertrophy, LV remodeling, contractile dysfunction, and oxidative stress in fructose-fed TAC mice.
引用
收藏
页码:H2223 / H2230
页数:8
相关论文
共 50 条
  • [1] Cinnamaldehyde attenuates pressure overload-induced cardiac hypertrophy
    Yang, Liu
    Wu, Qing-Qing
    Liu, Yuan
    Hu, Zhe-Fu
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (11): : 14345 - 14354
  • [2] Puerarin attenuates pressure overload-induced cardiac hypertrophy
    Yuan, Yuan
    Zong, Jing
    Zhou, Heng
    Bian, Zhou-Yan
    Deng, Wei
    Dai, Jia
    Gan, Hua-Wen
    Yang, Zheng
    Li, Hongliang
    Tang, Qi-Zhu
    JOURNAL OF CARDIOLOGY, 2014, 63 (1-2) : 73 - 81
  • [3] Evodiamine attenuates pressure overload-induced cardiac hypertrophy
    Li, Fangfang
    Yuan, Yuan
    Zhang, Ning
    Wu, Qingqing
    Li, Jin
    Zhou, Mengqiao
    Yang, Zheng
    Tang, Qizhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10202 - 10213
  • [4] Naringenin attenuates pressure overload-induced cardiac hypertrophy
    Zhang, Ning
    Yang, Zheng
    Yuan, Yuan
    Li, Fangfang
    Liu, Yuan
    Ma, Zhenguo
    Liao, Haihan
    Bian, Zhouyan
    Zhang, Yao
    Zhou, Heng
    Deng, Wei
    Zhou, Mengqiao
    Tang, Qizhu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2015, 10 (06) : 2206 - 2212
  • [5] Atorvastatin Attenuates Pressure Overload-induced Cardiac Hypertrophy and Dysfunction Through Enhanced Autophagy
    Zhao, Zhuo
    Wang, Wei
    Wang, Hua-Ting
    Geng, Qing-Xin
    Zhao, Di
    Su, Guohai
    CIRCULATION RESEARCH, 2015, 117
  • [6] Vitamin D attenuates pressure overload-induced cardiac remodeling and dysfunction in mice
    Zhang, Liang
    Yan, Xiao
    Zhang, Yun-Long
    Bai, Jie
    Hidru, Tesfaldet Habtemariam
    Wang, Qing-Shan
    Li, Hui-Hua
    JOURNAL OF STEROID BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2018, 178 : 293 - 302
  • [7] Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis
    Xu, Si-Chi
    Ma, Zhen-Guo
    Wei, Wen-Ying
    Yuan, Yu-Pei
    Tang, Qi-Zhu
    PPAR RESEARCH, 2017, 2017
  • [8] Diacylglycerol kinase ζ attenuates pressure overload-induced cardiac hypertrophy
    Harada, Mutsuo
    Takeishi, Yasuchika
    Arimoto, Takanori
    Niizeki, Takeshi
    Kitahara, Tatsuro
    Goto, Kaoru
    Walsh, Richard A.
    Kubota, Isao
    CIRCULATION JOURNAL, 2007, 71 (02) : 276 - 282
  • [9] Priming with synthetic oligonucleotides attenuates pressure overload-induced inflammation and cardiac hypertrophy in mice
    Velten, Markus
    Duerr, Georg D.
    Pessies, Thilo
    Schild, Julia
    Lohner, Ralph
    Mersmann, Jan
    Dewald, Oliver
    Zacharowski, Kai
    Klaschik, Sven
    Hilbert, Tobias
    Hoeft, Andreas
    Baumgarten, Georg
    Meyer, Rainer
    Boehm, Olaf
    Knuefermann, Pascal
    CARDIOVASCULAR RESEARCH, 2012, 96 (03) : 422 - 432
  • [10] The antioxidant edaravone attenuates pressure overload-induced left ventricular hypertrophy
    Tsujimoto, I
    Hikoso, S
    Yamaguchi, O
    Kashiwase, K
    Nakai, A
    Takeda, T
    Watanabe, T
    Taniike, M
    Matsumura, Y
    Nishida, K
    Hori, M
    Kogo, M
    Otsu, K
    HYPERTENSION, 2005, 45 (05) : 921 - 926