Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions

被引:11
作者
Gaudiano, Caterina [1 ]
Mottola, Margherita [1 ,2 ]
Bianchi, Lorenzo [3 ]
Corcioni, Beniamino [1 ]
Cattabriga, Arrigo [2 ]
Cocozza, Maria Adriana [2 ]
Palmeri, Antonino [2 ]
Coppola, Francesca [4 ,5 ]
Giunchi, Francesca [6 ]
Schiavina, Riccardo [2 ,3 ]
Fiorentino, Michelangelo [2 ]
Brunocilla, Eugenio [2 ,3 ]
Golfieri, Rita [1 ,2 ]
Bevilacqua, Alessandro [7 ]
机构
[1] IRCCS Azienda Osped Univ Bologna, Dept Radiol, I-40138 Bologna, Italy
[2] Univ Bologna, Dept Expt Diagnost & Specialty Med DIMES, I-40138 Bologna, Italy
[3] IRCCS Azienda Osped Univ Bologna, Div Urol, I-40138 Bologna, Italy
[4] Infermi Hosp, Radiol Unit, I-48018 Faenza, Italy
[5] SIRM Fdn, Italian Soc Med & Intervent Radiol, I-20122 Milan, Italy
[6] IRCCS Azienda Osped Univ Bologna, Dept Pathol, I-40138 Bologna, Italy
[7] Univ Bologna, Dept Comp Sci & Engn DISI, I-40126 Bologna, Italy
关键词
cancer staging; machine learning; multiparametric magnetic resonance imaging; prostate cancer; radiomics; ACTIVE SURVEILLANCE; BIOPSY-NAIVE;
D O I
10.3390/cancers14246156
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The risk of misclassifying clinically significant prostate cancer (csPCa) by multiparametric magnetic resonance imaging is consistent, also using the updated PIRADS score and although different definitions of csPCa, patients with Gleason Grade group (GG) >= 3 have a significantly worse prognosis. This study aims to develop a machine learning model predicting csPCa (i.e., any GG >= 3 lesion at target biopsy) by mpMRI radiomic features and analyzing similarities between GG groups. One hundred and two patients with 117 PIRADS >= 3 lesions at mpMRI underwent target+systematic biopsy, providing histologic diagnosis of PCa, 61 GG < 3 and 56 GG >= 3. Features were generated locally from an apparent diffusion coefficient and selected, using the LASSO method and Wilcoxon rank-sum test (p < 0.001), to achieve only four features. After data augmentation, the features were exploited to train a support vector machine classifier, subsequently validated on a test set. To assess the results, Kruskal-Wallis and Wilcoxon rank-sum tests (p < 0.001) and receiver operating characteristic (ROC)-related metrics were used. GG1 and GG2 were equivalent (p = 0.26), whilst clear separations between either GG[1,2] and GG >= 3 exist (p < 10-6). On the test set, the area under the curve = 0.88 (95% CI, 0.68-0.94), with positive and negative predictive values being 84%. The features retain a histological interpretation. Our model hints at GG2 being much more similar to GG1 than GG >= 3.
引用
收藏
页数:12
相关论文
共 32 条
[21]   Prediction of Clinically Significant Cancer Using Radiomics Features of Pre-Biopsy of Multiparametric MRI in Men Suspected of Prostate Cancer [J].
Ogbonnaya, Chidozie N. ;
Zhang, Xinyu ;
Alsaedi, Basim S. O. ;
Pratt, Norman ;
Zhang, Yilong ;
Johnston, Lisa ;
Nabi, Ghulam .
CANCERS, 2021, 13 (24)
[22]  
Rasband W, 1997, ImageJ software, DOI DOI 10.1104/PP.112.210773
[23]   Automatically Extracted Machine Learning Features from Preoperative CT to Early Predict Microvascular Invasion in HCC: The Role of the Zone of Transition (ZOT) [J].
Renzulli, Matteo ;
Mottola, Margherita ;
Coppola, Francesca ;
Cocozza, Maria Adriana ;
Malavasi, Silvia ;
Cattabriga, Arrigo ;
Vara, Giulio ;
Ravaioli, Matteo ;
Cescon, Matteo ;
Vasuri, Francesco ;
Golfieri, Rita ;
Bevilacqua, Alessandro .
CANCERS, 2022, 14 (07)
[24]   Prediction of Prostate Cancer Disease Aggressiveness Using Bi-Parametric Mri Radiomics [J].
Rodrigues, Ana ;
Santinha, Joao ;
Galvao, Bernardo ;
Matos, Celso ;
Couto, Francisco M. ;
Papanikolaou, Nickolas .
CANCERS, 2021, 13 (23)
[25]   Comparison of Interreader Reproducibility of the Prostate Imaging Reporting and Data System and Likert Scales for Evaluation of Multiparametric Prostate MRI [J].
Rosenkrantz, Andrew B. ;
Lim, Ruth P. ;
Haghighi, Mershad ;
Somberg, Molly B. ;
Babb, James S. ;
Taneja, Samir S. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 201 (04) :W612-W618
[26]   Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study [J].
Rouviere, Olivier ;
Puech, Philippe ;
Renard-Penna, Raphaele ;
Claudon, Michel ;
Roy, Catherine ;
Mege-Lechevallier, Florence ;
Decaussin-Petrucci, Myriam ;
Dubreuil-Chambardel, Marine ;
Magaud, Laurent ;
Remontet, Laurent ;
Ruffion, Alain ;
Colombel, Marc ;
Crouzet, Sebastien ;
Schott, Anne-Marie ;
Lemaitre, Laurent ;
Rabilloud, Muriel ;
Grenier, Nicolas .
LANCET ONCOLOGY, 2019, 20 (01) :100-109
[27]   Active surveillance for prostate cancer [J].
Shill, Daniela K. ;
Roobol, Monique J. ;
Ehdaie, Behfar ;
Vickers, Andrew J. ;
Carlsson, Sigrid, V .
TRANSLATIONAL ANDROLOGY AND UROLOGY, 2021, 10 (06) :2809-2819
[28]   False Positive Multiparametric Magnetic Resonance Imaging Phenotypes in the Biopsy-naive Prostate: Are They Distinct from Significant Cancer-associated Lesions? Lessons from PROMIS [J].
Stavrinides, Vasilis ;
Syer, Tom ;
Hu, Yipeng ;
Giganti, Francesco ;
Freeman, Alex ;
Karapanagiotis, Solon ;
Bott, Simon R. J. ;
Brown, Louise C. ;
Burns-Cox, Nicholas ;
Dudderidge, Timothy J. ;
Bosaily, Ahmed El-Shater ;
Frangou, Elena ;
Ghei, Maneesh ;
Henderson, Alastair ;
Hindley, Richard G. ;
Kaplan, Richard S. ;
Oldroyd, Robert ;
Parker, Chris ;
Persad, Raj ;
Rosario, Derek J. ;
Shergill, Iqbal S. ;
Echeverria, Lina M. Carmona ;
Norris, Joseph M. ;
Winkler, Mathias ;
Barratt, Dean ;
Kirkham, Alex ;
Punwani, Shonit ;
Whitaker, Hayley C. ;
Ahmed, Hashim U. ;
Emberton, Mark .
EUROPEAN UROLOGY, 2021, 79 (01) :20-29
[29]   Magnetic Resonance Imaging-Based Predictive Models for Clinically Significant Prostate Cancer: A Systematic Review [J].
Triquell, Marina ;
Campistol, Miriam ;
Celma, Ana ;
Regis, Lucas ;
Cuadras, Merce ;
Planas, Jacques ;
Trilla, Enrique ;
Morote, Juan .
CANCERS, 2022, 14 (19)
[30]   Prostate Imaging Reporting and Data System Version 2.1: 2019 Update of Prostate Imaging Reporting and Data System Version 2 [J].
Turkbey, Baris ;
Rosenkrantz, Andrew B. ;
Haider, Masoom A. ;
Padhani, Anwar R. ;
Villeirs, Geert ;
Macura, Katarzyna J. ;
Tempany, Clare M. ;
Choyke, Peter L. ;
Cornud, Francois ;
Margolis, Daniel J. ;
Thoeny, Harriet C. ;
Verma, Sadhna ;
Barentsz, Jelle ;
Weinreb, Jeffrey C. .
EUROPEAN UROLOGY, 2019, 76 (03) :340-351