Beyond Multiparametric MRI and towards Radiomics to Detect Prostate Cancer: A Machine Learning Model to Predict Clinically Significant Lesions

被引:11
作者
Gaudiano, Caterina [1 ]
Mottola, Margherita [1 ,2 ]
Bianchi, Lorenzo [3 ]
Corcioni, Beniamino [1 ]
Cattabriga, Arrigo [2 ]
Cocozza, Maria Adriana [2 ]
Palmeri, Antonino [2 ]
Coppola, Francesca [4 ,5 ]
Giunchi, Francesca [6 ]
Schiavina, Riccardo [2 ,3 ]
Fiorentino, Michelangelo [2 ]
Brunocilla, Eugenio [2 ,3 ]
Golfieri, Rita [1 ,2 ]
Bevilacqua, Alessandro [7 ]
机构
[1] IRCCS Azienda Osped Univ Bologna, Dept Radiol, I-40138 Bologna, Italy
[2] Univ Bologna, Dept Expt Diagnost & Specialty Med DIMES, I-40138 Bologna, Italy
[3] IRCCS Azienda Osped Univ Bologna, Div Urol, I-40138 Bologna, Italy
[4] Infermi Hosp, Radiol Unit, I-48018 Faenza, Italy
[5] SIRM Fdn, Italian Soc Med & Intervent Radiol, I-20122 Milan, Italy
[6] IRCCS Azienda Osped Univ Bologna, Dept Pathol, I-40138 Bologna, Italy
[7] Univ Bologna, Dept Comp Sci & Engn DISI, I-40126 Bologna, Italy
关键词
cancer staging; machine learning; multiparametric magnetic resonance imaging; prostate cancer; radiomics; ACTIVE SURVEILLANCE; BIOPSY-NAIVE;
D O I
10.3390/cancers14246156
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The risk of misclassifying clinically significant prostate cancer (csPCa) by multiparametric magnetic resonance imaging is consistent, also using the updated PIRADS score and although different definitions of csPCa, patients with Gleason Grade group (GG) >= 3 have a significantly worse prognosis. This study aims to develop a machine learning model predicting csPCa (i.e., any GG >= 3 lesion at target biopsy) by mpMRI radiomic features and analyzing similarities between GG groups. One hundred and two patients with 117 PIRADS >= 3 lesions at mpMRI underwent target+systematic biopsy, providing histologic diagnosis of PCa, 61 GG < 3 and 56 GG >= 3. Features were generated locally from an apparent diffusion coefficient and selected, using the LASSO method and Wilcoxon rank-sum test (p < 0.001), to achieve only four features. After data augmentation, the features were exploited to train a support vector machine classifier, subsequently validated on a test set. To assess the results, Kruskal-Wallis and Wilcoxon rank-sum tests (p < 0.001) and receiver operating characteristic (ROC)-related metrics were used. GG1 and GG2 were equivalent (p = 0.26), whilst clear separations between either GG[1,2] and GG >= 3 exist (p < 10-6). On the test set, the area under the curve = 0.88 (95% CI, 0.68-0.94), with positive and negative predictive values being 84%. The features retain a histological interpretation. Our model hints at GG2 being much more similar to GG1 than GG >= 3.
引用
收藏
页数:12
相关论文
共 32 条
[1]   Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study [J].
Ahmed, Hashim U. ;
Bosaily, Ahmed El-Shater ;
Brown, Louise C. ;
Gabe, Rhian ;
Kaplan, Richard ;
Parmar, Mahesh K. ;
Collaco-Moraes, Yolanda ;
Ward, Katie ;
Hindley, Richard G. ;
Freeman, Alex ;
Kirkham, Alex P. ;
Oldroyd, Robert ;
Parker, Chris ;
Emberton, Mark .
LANCET, 2017, 389 (10071) :815-822
[2]  
American College of Radiology, PI RADS PROST IM REP
[3]  
[Anonymous], 2012, ADV NEURAL INF PROCE
[4]   The Primacy of High B-Value 3T-DWI Radiomics in the Prediction of Clinically Significant Prostate Cancer [J].
Bevilacqua, Alessandro ;
Mottola, Margherita ;
Ferroni, Fabio ;
Rossi, Alice ;
Gavelli, Giampaolo ;
Barone, Domenico .
DIAGNOSTICS, 2021, 11 (05)
[5]   Active Surveillance in Intermediate-Risk Prostate Cancer: A Review of the Current Data [J].
Blas, Leandro ;
Shiota, Masaki ;
Eto, Masatoshi .
CANCERS, 2022, 14 (17)
[6]   Diagnostic performance of MRI/TRUS fusion-guided biopsies vs. systematic prostate biopsies in biopsy-naive, previous negative biopsy patients and men undergoing active surveillance [J].
Borghesi, Marco ;
Bianchi, Lorenzo ;
Barbaresi, Umberto ;
Vagnoni, Valerio ;
Corcioni, Beniamino ;
Gaudiano, Caterina ;
Fiorentino, Michelangelo ;
Giunchi, Francesca ;
Chessa, Francesco ;
Garofalo, Marco ;
Bertaccini, Alessandro ;
Angelini, Stefano ;
Ercolino, Amelio ;
Casablanca, Carlo ;
Droghetti, Matteo ;
Golfieri, Rita ;
Schiavina, Riccardo .
MINERVA UROLOGY AND NEPHROLOGY, 2021, 73 (03) :357-366
[7]   Active Surveillance for Low-Risk Prostate Cancer Worldwide: The PRIAS Study [J].
Bul, Meelan ;
Zhu, Xiaoye ;
Valdagni, Riccardo ;
Pickles, Tom ;
Kakehi, Yoshiyuki ;
Rannikko, Antti ;
Bjartell, Anders ;
van der Schoot, Deric K. ;
Cornel, Erik B. ;
Conti, Giario N. ;
Boeve, Egbert R. ;
Staerman, Frederic ;
Vis-Maters, Jenneke J. ;
Vergunst, Henk ;
Jaspars, Joris J. ;
Stroelin, Petra ;
van Muilekom, Erik ;
Schroder, Fritz H. ;
Bangma, Chris H. ;
Roobol, Monique J. .
EUROPEAN UROLOGY, 2013, 63 (04) :597-603
[8]   The Heterogeneity of Skewness in T2W-Based Radiomics Predicts the Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer [J].
Coppola, Francesca ;
Mottola, Margherita ;
Lo Monaco, Silvia ;
Cattabriga, Arrigo ;
Cocozza, Maria Adriana ;
Yuan, Jia Cheng ;
De Benedittis, Caterina ;
Cuicchi, Dajana ;
Guido, Alessandra ;
Rojas Llimpe, Fabiola Lorena ;
D'Errico, Antonietta ;
Ardizzoni, Andrea ;
Poggioli, Gilberto ;
Strigari, Lidia ;
Morganti, Alessio Giuseppe ;
Bazzoli, Franco ;
Ricciardiello, Luigi ;
Golfieri, Rita ;
Bevilacqua, Alessandro .
DIAGNOSTICS, 2021, 11 (05)
[9]   Machine learning applications in prostate cancer magnetic resonance imaging [J].
Cuocolo, Renato ;
Cipullo, Maria Brunella ;
Stanzione, Arnaldo ;
Ugga, Lorenzo ;
Romeo, Valeria ;
Radice, Leonardo ;
Brunetti, Arturo ;
Imbriaco, Massimo .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2019, 3 (01)
[10]   Clinically significant prostate cancer detection on MRI: A radiomic shape features study [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Romeo, Valeria ;
Verde, Francesco ;
Creta, Massimiliano ;
La Rocca, Roberto ;
Longo, Nicola ;
Pace, Leonardo ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 116 :144-149