Hybrid glowworm swarm optimization for task scheduling in the cloud environment

被引:15
作者
Zhou, Jing [1 ]
Dong, Shoubin [1 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Comp Network & Commun Lab Guangdong, Guangzhou, Guangdong, Peoples R China
关键词
Hybrid metaheuristic; swarm intelligence; glowworm swarm optimization; task scheduling; cloud computing;
D O I
10.1080/0305215X.2017.1361418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In recent years many heuristic algorithms have been proposed to solve task scheduling problems in the cloud environment owing to their optimization capability. This article proposes a hybrid glowworm swarm optimization (HGSO) based on glowworm swarm optimization (GSO), which uses a technique of evolutionary computation, a strategy of quantum behaviour based on the principle of neighbourhood, offspring production and random walk, to achieve more efficient scheduling with reasonable scheduling costs. The proposed HGSO reduces the redundant computation and the dependence on the initialization of GSO, accelerates the convergence and more easily escapes from local optima. The conducted experiments and statistical analysis showed that in most cases the proposed HGSO algorithm outperformed previous heuristic algorithms to deal with independent tasks.
引用
收藏
页码:949 / 964
页数:16
相关论文
共 28 条
[1]  
Adil S. H., 2015, 2015 INT C OP SOURC
[2]  
Agrawal K., 2015, 2015 INT C COMP INT
[3]   A hybrid meta-heuristic algorithm for optimization of crew scheduling [J].
Azadeh, A. ;
Farahani, M. Hosseinabadi ;
Eivazy, H. ;
Nazari-Shirkouhi, S. ;
Asadipour, G. .
APPLIED SOFT COMPUTING, 2013, 13 (01) :158-164
[4]   Honey bee behavior inspired load balancing of tasks in cloud computing environments [J].
Babu, Dhinesh L. D. ;
Krishna, P. Venkata .
APPLIED SOFT COMPUTING, 2013, 13 (05) :2292-2303
[5]  
Babu K. R., 2016, Innovations in bio-inspired computing and applications, P67
[6]  
Back T., 1997, IEEE Transactions on Evolutionary Computation, V1, P3, DOI 10.1109/4235.585888
[7]  
Chen HK, 2013, 2013 NATIONAL CONFERENCE ON PARALLEL COMPUTING TECHNOLOGIES (PARCOMPTECH), DOI [10.1007/s11063-013-9318-5, 10.1109/ParCompTech.2013.6621389]
[8]  
Fang Y., 2014, 11 IEEE INT C CONTR
[9]   A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 Special Session on Real Parameter Optimization [J].
Garcia, Salvador ;
Molina, Daniel ;
Lozano, Manuel ;
Herrera, Francisco .
JOURNAL OF HEURISTICS, 2009, 15 (06) :617-644
[10]  
Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, P1, DOI DOI 10.7551/MITPRESS/1090.001.0001