The global carbon budget 1959-2011

被引:459
作者
Le Quere, C. [1 ]
Andres, R. J. [2 ]
Boden, T. [2 ]
Conway, T. [3 ]
Houghton, R. A. [4 ]
House, J. I. [5 ]
Marland, G. [6 ]
Peters, G. P. [7 ]
van der Werf, G. R. [8 ]
Ahlstrom, A. [9 ]
Andrew, R. M. [7 ]
Bopp, L. [10 ]
Canadell, J. G. [11 ]
Ciais, P. [10 ]
Doney, S. C. [12 ]
Enright, C. [1 ]
Friedlingstein, P. [13 ]
Huntingford, C. [14 ]
Jain, A. K. [15 ]
Jourdain, C. [1 ]
Kato, E. [16 ]
Keeling, R. F. [17 ]
Goldewijk, K. Klein [18 ,19 ,20 ]
Levis, S. [21 ]
Levy, P. [14 ]
Lomas, M. [22 ]
Poulter, B. [10 ]
Raupach, M. R. [11 ]
Schwinger, J. [23 ,24 ]
Sitch, S. [25 ]
Stocker, B. D. [26 ,27 ]
Viovy, N. [10 ]
Zaehle, S. [28 ]
Zeng, N. [29 ]
机构
[1] Univ E Anglia, Tyndall Ctr Climate Change Res, Norwich NR4 7TJ, Norfolk, England
[2] Oak Ridge Natl Lab, CDIAC, Oak Ridge, TN USA
[3] NOAA, Earth Syst Res Lab NOAA ESRL, Boulder, CO 80305 USA
[4] WHRC, Falmouth, MA 02540 USA
[5] Univ Bristol, Dept Geog, Cabot Inst, Bristol BS8 1TH, Avon, England
[6] Appalachian State Univ, Res Inst Environm Energy & Econ, Boone, NC 28608 USA
[7] Ctr Int Climate & Environm Res Oslo CICERO, Oslo, Norway
[8] Vrije Univ Amsterdam, Fac Earth & Life Sci, Amsterdam, Netherlands
[9] Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden
[10] UVSQ, CEA, CNRS, Lab Sci Climat & Environm,CE Orme Merisiers, F-91191 Gif Sur Yvette, France
[11] CSIRO Marine & Atmospher Res, Global Carbon Project, Canberra, ACT, Australia
[12] Woods Hole Oceanog Inst, Woods Hole, MA 02543 USA
[13] Univ Exeter, Coll Engn Math & Phys Sci, Exeter, Devon, England
[14] CEH, Wallingford OX10 8BB, Oxon, England
[15] Univ Illinois, Dept Atmospher Sci, Chicago, IL 60680 USA
[16] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki, Japan
[17] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[18] PBL Netherlands Environm Assessment Agcy, The Hague, Netherlands
[19] Univ Utrecht, Dept Innovat & Environm Sci IMEW, Utrecht, Netherlands
[20] Univ Utrecht, Inst Hist & Culture OGC, Utrecht, Netherlands
[21] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[22] Univ Sheffield, CTCD, Sheffield S10 2TN, S Yorkshire, England
[23] Univ Bergen, Inst Geophys, Bergen, Norway
[24] Bjerknes Ctr Climate Res, Bergen, Norway
[25] Univ Exeter, Coll Life & Environm Sci, Exeter EX4 4RJ, Devon, England
[26] Univ Bern, Inst Phys, Climate & Environm Phys, CH-3012 Bern, Switzerland
[27] Univ Bern, Oeschger Ctr Climate Change Res, Bern, Switzerland
[28] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[29] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA
基金
欧洲研究理事会; 英国自然环境研究理事会; 美国国家科学基金会; 瑞士国家科学基金会;
关键词
LAND-USE CHANGE; ANTHROPOGENIC CO2 UPTAKE; ATMOSPHERIC CO2; VEGETATION DYNAMICS; DIOXIDE EMISSIONS; FIRE EMISSIONS; CLIMATE; FLUXES; CYCLE; DEFORESTATION;
D O I
10.5194/essd-5-165-2013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Accurate assessments of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (E-FF) are based on energy statistics, while emissions from Land-Use Change (E-LUC), including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (G(ATM)) is computed from the concentration. The mean ocean CO2 sink (S-OCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (S-LAND) is estimated by the difference of the other terms. For the last decade available (2002-2011), E-FF was 8.3 +/- 0.4 PgCyr(-1), E-LUC 1.0 +/- 0.5 PgC yr(-1), GATM 4.3 +/- 0.1 PgC yr(-1), S-OCEAN 2.5 +/- 0.5 PgC yr(-1), and S-LAND 2.6 +/- 0.8 PgC yr(-1). For year 2011 alone, E-FF was 9.5 +/- 0.5 PgC yr(-1), 3.0 percent above 2010, reflecting a continued trend in these emissions; E-LUC was 0.9 +/- 0.5 PgC yr(-1), approximately constant throughout the decade; G(ATM) was 3.6 +/- 0.2 PgC yr(-1), S-OCEAN was 2.7 +/- 0.5 PgC yr(-1), and S-LAND was 4.1 +/- 0.9 PgC yr(-1). G(ATM) was low in 2011 compared to the 2002-2011 average because of a high uptake by the land probably in response to natural climate variability associated to La Nina conditions in the Pacific Ocean. The global atmospheric CO2 concentration reached 391.31 +/- 0.13 ppm at the end of year 2011. We estimate that E-FF will have increased by 2.6% (1.9-3.5 %) in 2012 based on projections of gross world product and recent changes in the carbon intensity of the economy. All uncertainties are reported as +/- 1 sigma (68% confidence assuming Gaussian error distributions that the real value lies within the given interval), reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. This paper is intended to provide a baseline to keep track of annual carbon budgets in the future. All data presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_V2013).
引用
收藏
页码:165 / 185
页数:21
相关论文
共 79 条
  • [1] Too early to infer a global NPP decline since 2000
    Ahlstrom, Anders
    Miller, Paul A.
    Smith, Benjamin
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [2] A synthesis of carbon dioxide emissions from fossil-fuel combustion
    Andres, R. J.
    Boden, T. A.
    Breon, F. -M.
    Ciais, P.
    Davis, S.
    Erickson, D.
    Gregg, J. S.
    Jacobson, A.
    Marland, G.
    Miller, J.
    Oda, T.
    Olivier, J. G. J.
    Raupach, M. R.
    Rayner, P.
    Treanton, K.
    [J]. BIOGEOSCIENCES, 2012, 9 (05) : 1845 - 1871
  • [3] [Anonymous], 2012, TRENDS ATMOSPHERIC C
  • [4] [Anonymous], 2010, Country Report
  • [5] [Anonymous], GLOBAL CHANGE, DOI DOI 10.1073/PNAS.0702737104
  • [6] Atmospheric Lifetime of Fossil Fuel Carbon Dioxide
    Archer, David
    Eby, Michael
    Brovkin, Victor
    Ridgwell, Andy
    Cao, Long
    Mikolajewicz, Uwe
    Caldeira, Ken
    Matsumoto, Katsumi
    Munhoven, Guy
    Montenegro, Alvaro
    Tokos, Kathy
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2009, 37 : 117 - 134
  • [7] An isopycnic ocean carbon cycle model
    Assmann, K. M.
    Bentsen, M.
    Segschneider, J.
    Heinze, C.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2010, 3 (01) : 143 - 167
  • [8] Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere
    Aufdenkampe, Anthony K.
    Mayorga, Emilio
    Raymond, Peter A.
    Melack, John M.
    Doney, Scott C.
    Alin, Simone R.
    Aalto, Rolf E.
    Yoo, Kyungsoo
    [J]. FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2011, 9 (01) : 53 - 60
  • [9] Globalizing results from ocean in situ iron fertilization studies
    Aumont, O.
    Bopp, L.
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
  • [10] Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps
    Baccini, A.
    Goetz, S. J.
    Walker, W. S.
    Laporte, N. T.
    Sun, M.
    Sulla-Menashe, D.
    Hackler, J.
    Beck, P. S. A.
    Dubayah, R.
    Friedl, M. A.
    Samanta, S.
    Houghton, R. A.
    [J]. NATURE CLIMATE CHANGE, 2012, 2 (03) : 182 - 185