Variations on tilings in the Manhattan metric

被引:9
作者
Gravier, S [1 ]
Mollard, M [1 ]
Payan, C [1 ]
机构
[1] CNRS, Lab Leibniz, F-38031 Grenoble 1, France
关键词
tiling; Manhattan metric;
D O I
10.1023/A:1005106901394
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate tilings of the integer lattice in the Euclidean n-dimensional space. The tiles considered here are the union of spheres defined by the Manhattan metric. We give a necessary condition for the existence of such a tiling for Z(n) when n greater than or equal to 2. We prove that this condition is sufficient when n = 2. Finally, we give some tilings of Z(n) when n greater than or equal to 3.
引用
收藏
页码:265 / 273
页数:9
相关论文
共 11 条
[1]  
Adler A., 1981, GEOM, V10, P49
[2]   A NOTE ON PERFECT LEE-CODES OVER SMALL ALPHABETS [J].
ASTOLA, J .
DISCRETE APPLIED MATHEMATICS, 1982, 4 (03) :227-228
[3]  
Berger R., 1966, MEM AM MATH SOC, P72
[4]  
de Bruijn N.G., 1950, Publ. Math. Debrecen, V1, P232
[5]  
Golomb S. W., 1968, Error correcting codes, P175
[6]   PERFECT CODES IN LEE METRIC AND PACKING OF POLYOMINOES [J].
GOLOMB, SW ;
WELCH, LR .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1970, 18 (02) :302-+
[7]   On the non-existence of 3-dimensional tiling in the Lee metric [J].
Gravier, S ;
Mollard, M ;
Payan, C .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (05) :567-572
[8]  
LEPISTO T, 1984, ANN U TURKU A, V186, P59
[9]   ADDITION THEOREMS FOR SETS OF INTEGERS [J].
LONG, CT .
PACIFIC JOURNAL OF MATHEMATICS, 1967, 23 (01) :107-&
[10]   NONEXISTENCE THEOREMS ON PERFECT LEE CODES OVER LARGE ALPHABETS [J].
POST, KA .
INFORMATION AND CONTROL, 1975, 29 (04) :369-380