Rotating Cylinders with Anisotropic Fluids in General Relativity

被引:8
作者
Bolokhov, S. V. [1 ]
Bronnikov, K. A. [1 ,2 ,3 ]
Skvortsova, M. V. [1 ]
机构
[1] RUDN Univ, Peoples Friendship Univ Russia, Moscow 117198, Russia
[2] VNIIMS, Ctr Gravitat & Fundamental Metrol, Moscow 119361, Russia
[3] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
PERFECT FLUID; STATIONARY; EQUATIONS;
D O I
10.1134/S020228931902004X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider anisotropic fluids with directional pressures p(i) = w(i) ( is the density, w(i) = const, i = 1, 2, 3) as sources of gravity in stationary cylindrically symmetric space-times. We describe a general way of obtaining exact solutions with such sources, where the main features are splitting of the Ricci tensor into static and rotational parts and using the harmonic radial coordinate. Depending on the values of w(i), it appears possible to obtain general or special solutions to the Einstein equations, thus recovering some known solutions and finding new ones. Three particular examples of exact solutions are briefly described: with a stiff isotropic perfect fluid (p = ), with a distribution of cosmic strings of azimuthal direction (i.e., forming circles around the z axis), and with a stationary combination of two opposite radiation flows along the z axis.
引用
收藏
页码:122 / 130
页数:9
相关论文
共 36 条
  • [1] and K. A. Bronnikov, PHYS REV D
  • [2] [Anonymous], 2003, EXACT SOLUTIONS EINS
  • [3] DYNAMICS OF BUBBLES IN GENERAL-RELATIVITY
    BEREZIN, VA
    KUZMIN, VA
    TKACHEV, II
    [J]. PHYSICAL REVIEW D, 1987, 36 (10): : 2919 - 2944
  • [4] A vacuum exterior to Maitra's cylindrical dust solution
    Bonnor, W. B.
    Steadman, B. R.
    [J]. GENERAL RELATIVITY AND GRAVITATION, 2009, 41 (06) : 1381 - 1387
  • [5] Nonlinear electrodynamics, regular black holes and wormholes
    Bronnikov, K. A.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (06):
  • [6] The Birkhoff theorem and string clouds
    Bronnikov, K. A.
    Kim, S-W
    Skvortsova, M. V.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2016, 33 (19)
  • [7] Rotating cylindrical wormholes: a no-go theorem
    Bronnikov, K. A.
    [J]. INTERNATIONAL CONFERENCE ON PARTICLE PHYSICS AND ASTROPHYSICS (ICPPA-2015), PTS 1-4, 2016, 675
  • [8] Rotating cylindrical wormholes and energy conditions
    Bronnikov, K. A.
    Krechet, V. G.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (2-3):
  • [9] Cylindrical wormholes
    Bronnikov, K. A.
    Lemos, Jose P. S.
    [J]. PHYSICAL REVIEW D, 2009, 79 (10):
  • [10] Bronnikov K.A., 2012, Black Holes, Cosmology, and Extra Dimensions