Influence of exogenous calcium on the physiological, biochemical, phytochemical and ionic homeostasis of tea plants (Camellia sinensis (L.) O. Kuntze) subjected to fluorine stress

被引:8
|
作者
Luo, Jinlei [1 ,2 ]
Ni, Dejiang [1 ,2 ]
He, Chang [1 ,2 ]
Zhang, Shanming [1 ,2 ]
Liu, Siyi [1 ,2 ]
Du, Yaru [1 ,2 ]
Chen, Yuqiong [1 ,2 ]
机构
[1] Huazhong Agr Univ, Coll Hort & Forestry Sci, Minist Educ, Key Lab Hort Plant Biol, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Hort & Forestry Sci, Minist Agr, Key Lab Urban Agr Cent China, Wuhan 430070, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Tea leaves; Fluorine stress; Calcium; Biochemical components; Ion homeostasis; TOLERANCE; ALUMINUM; EXPRESSION; PHOTOSYNTHESIS; BIOSYNTHESIS; ACCUMULATION; METABOLOME; MECHANISMS; CATECHINS; TOXICITY;
D O I
10.1007/s10725-019-00478-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tea plant (Camellia sinensis) may hyperaccumulate fluorine (F) in its leaves, which may cause fluorosis in tea consumers. Recent studies have implied that exogenous calcium (Ca) may reduce F in tea leaves, although our mechanistic understanding of this phenomenon remains limited. Here, the effects of exogenous Ca on the physiological, biochemical and ionic homeostasis of tea leaves were investigated in the presence and absence of F. Elevated levels of malondialdehyde (MDA) and impaired cellular ultrastructure indicated that exogenous F induced stress in tea plants subjected to deficient Ca (0.01, 0.05mM) and extremely excessive Ca (10mM) treatments. Additionally, more F were accumulated in leaves compared to the control when tea plants were treated with 0.5mM Ca. The lowest levels of MDA and F were observed at an optimal level of 5mM Ca. F increased the levels of caffeine, polyphenols, and catechins, but decreased the content of soluble sugars and gallic acid when the level of Ca was within 5mM. Moreover, based on a multivariate analysis on ionic composition, the Ca-regulated disorder in the homeostasis of B, Al, Cu, and Zn was strongly correlated with the accumulation of F. Our results demonstrate that within a range of concentrations, exogenous Ca was able to reduce F content and enhance F tolerance in tea leaves. These effects of exogenous Ca on F tolerance may be related to ionic homeostasis.
引用
收藏
页码:455 / 465
页数:11
相关论文
共 50 条
  • [31] Effect of fluoride on the biosynthesis of catechins in tea [Camellia sinensis (L.) O. Kuntze] leaves
    Yang, Xiao
    Yu, Zhi
    Zhang, Beibei
    Huang, Jin
    Zhang, Yuehua
    Fang, Fengxiang
    Li, Chunlei
    Zhu, Hongkai
    Chen, Yuqiong
    SCIENTIA HORTICULTURAE, 2015, 184 : 78 - 84
  • [32] Differential expression of microRNAs in dormant bud of tea [Camellia sinensis (L.) O. Kuntze]
    Jeyaraj, Anburaj
    Chandran, Viswanathan
    Gajjeraman, Prabu
    PLANT CELL REPORTS, 2014, 33 (07) : 1053 - 1069
  • [33] Molecular and physiological mechanisms of tea (Camellia sinensis (L.) O. Kuntze) leaf and root in response to nitrogen deficiency
    Zheng-He Lin
    Chang-Song Chen
    Shui-Qing Zhao
    Yuan Liu
    Qiu-Sheng Zhong
    Qi-Chun Ruan
    Zhi-Hui Chen
    Xiao-Mei You
    Rui-Yang Shan
    Xin-Lei Li
    Ya-Zhen Zhang
    BMC Genomics, 24
  • [34] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    van Breda, Shane V.
    van der Merwe, Chris F.
    Robbertse, Hannes
    Apostolides, Zeno
    PLANTA, 2013, 237 (03) : 849 - 858
  • [35] Clonal variation of tea [Camellia sinensis (L.) O. Kuntze] in countering water deficiency
    Netto L.A.
    Jayaram K.M.
    Puthur J.T.
    Physiology and Molecular Biology of Plants, 2010, 16 (4) : 359 - 367
  • [36] Immunohistochemical localization of caffeine in young Camellia sinensis (L.) O. Kuntze (tea) leaves
    Shane V. van Breda
    Chris F. van der Merwe
    Hannes Robbertse
    Zeno Apostolides
    Planta, 2013, 237 : 849 - 858
  • [37] Metabolic Regulation Profiling of Carbon and Nitrogen in Tea Plants [Camellia sinensis (L.) O. Kuntze] in Response to Shading
    Li, Yuchen
    Jeyaraj, Anburaj
    Yu, Hanpu
    Wang, Yu
    Ma, Qingping
    Chen, Xuan
    Sun, Haiwei
    Zhang, Hong
    Ding, Zhaotang
    Li, Xinghui
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (04) : 961 - 974
  • [38] Purification and partial characterization of β-glucosidase from fresh leaves of tea plants (Camellia sinensis (L.) O. Kuntze)
    Li, YY
    Jiang, CJ
    Wan, XC
    Zhang, ZZ
    Li, DX
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2005, 37 (06) : 363 - 370
  • [39] Subcellular Localization of Galloylated Catechins in Tea Plants [Camellia sinensis (L.) O. Kuntze] Assessed via Immunohistochemistry
    Xu, Huanhuan
    Wang, Ya
    Chen, Yana
    Zhang, Pan
    Zhao, Yi
    Huang, Yewei
    Wang, Xuanjun
    Sheng, Jun
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [40] Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze)
    Li, Jiahao
    Arkorful, Emmanuel
    Cheng, Siyuan
    Zhou, Qiongqiong
    Li, Huan
    Chen, Xuan
    Sun, Kang
    Li, Xinghui
    SCIENTIA HORTICULTURAE, 2018, 238 : 356 - 362