Gingival tissue autophagy pathway gene expression profiles in periodontitis and aging

被引:12
作者
Ebersole, Jeffrey L. [1 ,2 ]
Kirakodu, Sreenatha [2 ]
Novak, Michael J. [2 ]
Dawson, Dolph [2 ,3 ]
Stromberg, Arnold J. [4 ]
Orraca, Luis [5 ]
Gonzalez-Martinez, Janis [6 ]
Burgos, Armando [6 ]
Gonzalez, Octavio A. [2 ,3 ]
机构
[1] Univ Nevada, Sch Dent Med, Dept Biomed Sci, Las Vegas, NV 89154 USA
[2] Univ Kentucky, Ctr Oral Hlth Res, Lexington, KY USA
[3] Univ Kentucky, Coll Dent, Dept Periodontol, Lexington, KY USA
[4] Univ Kentucky, Dept Stat, Coll Arts & Sci, Lexington, KY USA
[5] Univ Puerto Rico, Sch Dent Med, San Juan, PR 00936 USA
[6] Univ Puerto Rico, Caribbean Primate Res Ctr, Toa Baja, PR USA
关键词
autophagy; gene expression; nonhuman primates; periodontitis; PORPHYROMONAS-GINGIVALIS; REACTIVE OXYGEN; IMMUNE PARAMETERS; CELL-DEATH; APOPTOSIS; PROTEIN; LIPOPOLYSACCHARIDE; MITOCHONDRIA; PROGRESSION; ATG16L1;
D O I
10.1111/jre.12789
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Objective We hypothesized that autophagy-related genes will be differentially expressed in periodontitis, suggesting an impaired gingival autophagic response associated with disease. Background Autophagy is a cellular physiologic mechanism to maintain tissue homeostasis, while deficient autophagic responses increase inflammation and susceptibility to infection. Methods Rhesus monkeys [<3 years to 23 years of age (n = 34)] were examined for periodontal health and naturally occurring periodontitis. Gingival tissues samples were obtained from healthy or diseased sites, total RNA was isolated, and the Rhesus Gene Chip 1.0 ST (Affymetrix) was used for gene expression analysis of 150 autophagy-related genes. Results Comparison of expression levels with adult healthy tissues demonstrated a rather limited number of individual genes that were significantly different across the age-groups. In contrast, with periodontitis in the adults and aged animals, about 15% of the genes were significantly increased or decreased. The differences were reflected in the mTOR complex (5/12), ULK1/ATG1 complex (5/9), PI3K complex (5/21), ATG9 complex (2/7), ATG12 conjugation/LC3 lipidation (7/22), and lysosome fusion/vesicle degradation [LF/VD (5/10)] activities within the broader autophagic pathway. The genes most greatly altered in gingival tissues of naturally occurring periodontitis were identified in the ATG12 and LF/VD pathways that approximated 50% of the genes in each of those categories. While healthy gingival aging did not appear to reflect altered autophagy gene expression, substantial differences were noted with periodontitis irrespective of the age of the animals. Future studies into the role of autophagy in periodontitis and could offer potential new therapeutic strategies to prevent and/or treat periodontal disease.
引用
收藏
页码:34 / 45
页数:12
相关论文
共 49 条
[41]   Porphyromonas gingivalis and the autophagic pathway:: an innate immune interaction? [J].
Rodrigues, Paulo Henrique ;
Belanger, Myriam ;
Dunn, William, Jr. ;
Progulske-Fox, Ann .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2008, 13 :178-187
[42]   LAMP-2 - A control step for phagosome and autophagosome maturation [J].
Saftig, Paul ;
Beertsen, Wouter ;
Eskelinen, Eeva-Liisa .
AUTOPHAGY, 2008, 4 (04) :510-512
[43]   Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production [J].
Saitoh, Tatsuya ;
Fujita, Naonobu ;
Jang, Myoung Ho ;
Uematsu, Satoshi ;
Yang, Bo-Gie ;
Satoh, Takashi ;
Omori, Hiroko ;
Noda, Takeshi ;
Yamamoto, Naoki ;
Komatsu, Masaaki ;
Tanaka, Keiji ;
Kawai, Taro ;
Tsujimura, Tohru ;
Takeuchi, Osamu ;
Yoshimori, Tamotsu ;
Akira, Shizuo .
NATURE, 2008, 456 (7219) :264-U68
[44]   ROS, mitochondria and the regulation of autophagy [J].
Scherz-Shouval, Ruth ;
Elazar, Zvulun .
TRENDS IN CELL BIOLOGY, 2007, 17 (09) :422-427
[45]   Porphyromonas gingivalis Mediates Inflammasome Repression in Polymicrobial Cultures through a Novel Mechanism Involving Reduced Endocytosis [J].
Taxman, Debra J. ;
Swanson, Karen V. ;
Broglie, Peter M. ;
Wen, Haitao ;
Holley-Guthrie, Elizabeth ;
Huang, Max Tze-Han ;
Callaway, Justin B. ;
Eitas, Tim K. ;
Duncan, Joseph A. ;
Ting, Jenny P. Y. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (39) :32791-32799
[46]   Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis [J].
Tsai, CC ;
Chen, HS ;
Chen, SL ;
Ho, YP ;
Ho, KY ;
Wu, YM ;
Hung, CC .
JOURNAL OF PERIODONTAL RESEARCH, 2005, 40 (05) :378-384
[47]   Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells [J].
Tsuda, H. ;
Ochiai, K. ;
Suzuki, N. ;
Otsuka, K. .
JOURNAL OF PERIODONTAL RESEARCH, 2010, 45 (05) :626-634
[48]  
Van Dyke TE, 2013, J CLIN PERIODONTOL, V40, pS1, DOI [10.1902/jop.2013.1340018, 10.1111/jcpe.12088]
[49]   Porphyromonas gingivalis infection sequesters pro-apoptotic Bad through Akt in primary gingival epithelial cells [J].
Yao, L. ;
Jermanus, C. ;
Barbetta, B. ;
Choi, C. ;
Verbeke, P. ;
Ojcius, D. M. ;
Yilmaz, Oe .
MOLECULAR ORAL MICROBIOLOGY, 2010, 25 (02) :89-101