Relative equilibria of a rigid satellite in a circular Keplerian orbit

被引:0
作者
Beck, JA [1 ]
Hall, CD [1 ]
机构
[1] USAF, Inst Technol, Dept Aeronaut & Astronaut, Wright Patterson AFB, OH 45433 USA
关键词
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
We examine relative equilibria of a rigid body free to rotate about its center of mass which is constrained to follow a Keplerian orbit in a central gravitational field. We derive a noncanonical Hamiltonian formulation of this system and show how it relates to the noncanonical system for an unconstrained rigid body in a hierarchy of approximations of the two-body problem. For a particular approximation of the potential, the Keplerian system is equivalent to the classical approximation typically seen in the literature. We determine relative equilibria for this approximation and derive stability conditions for both arbitrary and axisymmetric bodies.
引用
收藏
页码:215 / 247
页数:33
相关论文
共 25 条
[1]  
[Anonymous], 1961, J ASTRONAUTICAL SCI
[2]  
Beck J., 1997, THESIS AIR FORCE I T
[3]  
BELETSKII VV, 1966, MOTION ARTIFICIAL SA
[4]  
DAzzo J.J., 1988, Linear Control System Analysis and Design: Conventional and Modern, Vthird
[5]  
Holm D. D., 1985, Physics Reports, V123, P1, DOI 10.1016/0370-1573(85)90028-6
[6]   SPECTRAL STABILITY OF RELATIVE EQUILIBRIA [J].
Howard, James E. .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 48 (03) :267-288
[7]   CALCULATION OF LINEAR-STABILITY BOUNDARIES FOR EQUILIBRIA OF HAMILTONIAN-SYSTEMS [J].
HOWARD, JE ;
MACKAY, RS .
PHYSICS LETTERS A, 1987, 122 (6-7) :331-334
[8]   LINEAR-STABILITY OF SYMPLECTIC MAPS [J].
HOWARD, JE ;
MACKAY, RS .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (05) :1036-1051
[9]   UNIFIED HAMILTONIAN STABILITY THEORY [J].
HOWARD, JE .
CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1995, 62 (02) :111-116
[10]  
Hughes P., 1986, Spacecraft Attitude Dynamics