A simple approach of enlarging convergence regions of perturbation approximations

被引:35
作者
Liao, SJ [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture & Ocean Engn, Shanghai 200030, Peoples R China
基金
中国国家自然科学基金;
关键词
homotopy analysis method; enlarging convergence region; general Taylor theorem; Van der Pol equation; Riccati equation;
D O I
10.1023/A:1008373627897
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a simple approach to enlarging convergence regions of perturbation approximations is proposed. Based on the so-called general Taylor theorems, this approach has a solid mathematical foundation. Moreover, it is rather simple to apply. Two nonlinear equations, the Riccati equation and the Van der Pol equation are used as examples to illustrate the validity and the great potential of this approach.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 15 条
[1]   POWER-SERIES EXPANSIONS FOR THE FREQUENCY AND PERIOD OF THE LIMIT-CYCLE OF THE VANDERPOL EQUATION [J].
ANDERSEN, CM ;
GEER, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (03) :678-693
[2]  
[Anonymous], 1979, INTRO PERTURBATION T
[3]  
Bavinck H., 1974, International Journal of Non-Linear Mechanics, V9, P421, DOI 10.1016/0020-7462(74)90008-0
[4]   ON PERTURBATION PROCEDURE FOR LIMIT-CYCLE ANALYSIS [J].
CHEN, SH ;
CHEUNG, YK ;
LAU, SL .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (01) :125-133
[5]   PERTURBATION ANALYSIS OF THE LIMIT-CYCLE OF THE FREE VANDERPOL EQUATION [J].
DADFAR, MB ;
GEER, J ;
ANDERSEN, CM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :881-895
[6]  
DAVIS RT, 1967, INT J NONLIN MECH, V2, P153, DOI DOI 10.1016/0020-7462(67)90011-X
[7]  
Liao S. J., 1992, 520 U HAMB I FUER SC, V520
[8]   AN APPROXIMATE SOLUTION TECHNIQUE NOT DEPENDING ON SMALL PARAMETERS - A SPECIAL EXAMPLE [J].
LIAO, SJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1995, 30 (03) :371-380
[10]   An explicit, totally analytic approximate solution for Blasius' viscous flow problems [J].
Liao, SJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1999, 34 (04) :759-778