Spectral Unsupervised Domain Adaptation for Visual Recognition

被引:48
作者
Zhang, Jingyi [1 ,2 ]
Huang, Jiaxing [2 ]
Tian, Zichen [1 ]
Lu, Shijian [1 ,2 ]
机构
[1] Nanyang Technol Univ, S Lab, Singapore, Singapore
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
来源
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2022年
关键词
D O I
10.1109/CVPR52688.2022.00960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Though unsupervised domain adaptation (UDA) has achieved very impressive progress recently, it remains a great challenge due to missing target annotations and the rich discrepancy between source and target distributions. We propose Spectral UDA (SUDA), an effective and efficient UDA technique that works in the spectral space and can generalize across different visual recognition tasks. SUDA addresses the UDA challenges from two perspectives. First, it introduces a spectrum transformer (ST) that mitigates inter-domain discrepancies by enhancing domain-invariant spectra while suppressing domain-variant spectra of source and target samples simultaneously. Second, it introduces multi-view spectral learning that learns useful unsupervised representations by maximizing mutual information among multiple ST-generated spectral views of each target sample. Extensive experiments show that SUDA achieves superior accuracy consistently across different visual tasks in object detection, semantic segmentation and image classification. Additionally, SUDA also works with the transformer-based network and achieves state-of-the-art performance on object detection.
引用
收藏
页码:9819 / 9830
页数:12
相关论文
共 90 条
[1]   Self-supervised Augmentation Consistency for Adapting Semantic Segmentation [J].
Araslanov, Nikita ;
Roth, Stefan .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :15379-15389
[2]   Cross-Domain Car Detection Using Unsupervised Image-to-Image Translation: From Day to Night [J].
Arruda, Vinicius F. ;
Paixao, Thiago M. ;
Berriel, Rodrigo F. ;
De Souza, Alberto F. ;
Badue, Claudine ;
Sebe, Nicu ;
Oliveira-Santos, Thiago .
2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]  
Bow S.-T., 2002, Pattern Recognition and Image Processiong, VSecond
[5]   Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving [J].
Cai, Mu ;
Zhang, Hong ;
Huang, Huijuan ;
Geng, Qichuan ;
Li, Yixuan ;
Huang, Gao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :13910-13920
[6]   Exploring Object Relation in Mean Teacher for Cross-Domain Detection [J].
Cai, Qi ;
Pan, Yingwei ;
Ngo, Chong-Wah ;
Tian, Xinmei ;
Duan, Lingyu ;
Yao, Ting .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11449-11458
[7]  
Cao Y, 2019, IEEE ICC
[8]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[9]  
Chaki J., 2018, BEGINNERS GUIDE IMAG, DOI DOI 10.1201/9780429441134
[10]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848