UKAEA capabilities to address the challenges on the path to delivering fusion power

被引:23
作者
Chapman, I. T. [1 ]
Morris, A. W. [1 ]
机构
[1] Culham Sci Ctr, Culham Ctr Fus Energy, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 377卷 / 2141期
基金
英国工程与自然科学研究理事会;
关键词
tokamak; materials; tritium; robotics; HIGH-HEAT-FLUX; 1ST WALL; DEMO; PROGRESS; DESIGN; PERFORMANCE; PLASMAS; PHYSICS; TRITIUM;
D O I
10.1098/rsta.2017.0436
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fusion power could be one of very few sustainable options to replace fossil fuels as the world's primary energy source. Fusion offers the potential of predictable, safe power with no carbon emissions and fuel sources lasting for millions of years. However, it is notoriously difficult to achieve in a controlled, steady-state fashion. The most promising path is via magnetic confinement in a device called a tokamak. A magnetic confinement fusion (MCF) power plant requires many different science, technology and engineering challenges to be met simultaneously. This requires an integrated approach from the outset; advances are needed in individual areas but these only bring fusion electricity closer if the other challenges are resolved in harmony. The UK Atomic Energy Authority (UKAEA) has developed a wide range of skills to address many of the challenges and hosts the JET device, presently the only MCF facility capable of operating with both the fusion fuels, deuterium and tritium. Recently, several major new UKAEA facilities have been funded and some have started operation, notably a new spherical tokamak (MAST Upgrade), a major robotics facility (RACE), and a materials research facility (MRF). Most recently, work has started on Hydrogen-3 Advanced Technology (H3AT) for tritium technology and a group of Fusion Technology Facilities. This article is part of a discussion meeting issue 'Fusion energy using tokamaks: can development be accelerated?'
引用
收藏
页数:14
相关论文
共 51 条
[31]   Overview of the JET results in support to ITER [J].
Litaudon, X. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. ;
Bacharis, M. ;
Baciero, A. ;
Baiao, D. ;
Bailey, S. ;
Baker, A. ;
Balboa, I. .
NUCLEAR FUSION, 2017, 57 (10)
[32]  
Ma P-W, SPILADY SPIN LATTICE
[33]   Pedestal confinement and stability in JET-ILW ELMy H-modes [J].
Maggi, C. F. ;
Saarelma, S. ;
Casson, F. J. ;
Challis, C. ;
de la Luna, E. ;
Frassinetti, L. ;
Giroud, C. ;
Joffrin, E. ;
Simpson, J. ;
Beurskens, M. ;
Chapman, I. ;
Hobirk, J. ;
Leyland, M. ;
Lomas, P. ;
Lowry, C. ;
Nunes, I. ;
Rimini, F. ;
Sips, A. C. C. ;
Urano, H. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. .
NUCLEAR FUSION, 2015, 55 (11)
[34]   Direct observation of the spatial distribution of primary cascade damage in tungsten [J].
Mason, D. R. ;
Sand, A. E. ;
Yi, X. ;
Dudarev, S. L. .
ACTA MATERIALIA, 2018, 144 :905-917
[35]   PLASMA DETACHMENT FROM DIVERTOR TARGETS AND LIMITERS [J].
MATTHEWS, GF .
JOURNAL OF NUCLEAR MATERIALS, 1995, 220 :104-116
[36]   Overview of NSTX Upgrade initial results and modelling highlights [J].
Menard, J. E. ;
Allain, J. P. ;
Battaglia, D. J. ;
Bedoya, F. ;
Bell, R. E. ;
Belova, E. ;
Berkery, J. W. ;
Boyer, M. D. ;
Crocker, N. ;
Diallo, A. ;
Ebrahimi, F. ;
Ferraro, N. ;
Fredrickson, E. ;
Frerichs, H. ;
Gerhardt, S. ;
Gorelenkov, N. ;
Guttenfelder, W. ;
Heidbrink, W. ;
Kaita, R. ;
Kaye, S. M. ;
Kriete, D. M. ;
Kubota, S. ;
LeBlanc, B. P. ;
Liu, D. ;
Lunsford, R. ;
Mueller, D. ;
Myers, C. E. ;
Ono, M. ;
Park, J. -K. ;
Podesta, M. ;
Raman, R. ;
Reinke, M. ;
Ren, Y. ;
Sabbagh, S. A. ;
Schmitz, O. ;
Scotti, F. ;
Sechrest, Y. ;
Skinner, C. H. ;
Smith, D. R. ;
Soukhanovskii, V. ;
Stoltzfus-Dueck, T. ;
Yuh, H. ;
Wang, Z. ;
Waters, I. ;
Ahn, J. -W. ;
Andre, R. ;
Barchfeld, R. ;
Beiersdorfer, P. ;
Bertelli, N. ;
Bhattacharjee, A. .
NUCLEAR FUSION, 2017, 57 (10)
[37]   Characterisation of the L-mode scrape off layer in MAST: decay lengths [J].
Militello, F. ;
Garzotti, L. ;
Harrison, J. ;
Omotani, J. T. ;
Scannell, R. ;
Allan, S. ;
Kirk, A. ;
Lupelli, I. ;
Thornton, A. J. .
NUCLEAR FUSION, 2016, 56 (01)
[38]   MAST Upgrade Divertor Facility: A Test Bed for Novel Divertor Solutions [J].
Morris, William ;
Harrison, J. R. ;
Kirk, A. ;
Lipschultz, B. ;
Militello, F. ;
Moulton, D. ;
Walkden, N. R. .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (05) :1217-1226
[39]   Using SOLPS to confirm the importance of total flux expansion in Super-X divertors [J].
Moulton, D. ;
Harrison, J. ;
Lipschultz, B. ;
Coster, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (06)
[40]   High- energy collision cascades in tungsten: Dislocation loops structure and clustering scaling laws [J].
Sand, A. E. ;
Dudarev, S. L. ;
Nordlund, K. .
EPL, 2013, 103 (04)