UKAEA capabilities to address the challenges on the path to delivering fusion power

被引:23
作者
Chapman, I. T. [1 ]
Morris, A. W. [1 ]
机构
[1] Culham Sci Ctr, Culham Ctr Fus Energy, United Kingdom Atom Energy Author, Abingdon OX14 3DB, Oxon, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2019年 / 377卷 / 2141期
基金
英国工程与自然科学研究理事会;
关键词
tokamak; materials; tritium; robotics; HIGH-HEAT-FLUX; 1ST WALL; DEMO; PROGRESS; DESIGN; PERFORMANCE; PLASMAS; PHYSICS; TRITIUM;
D O I
10.1098/rsta.2017.0436
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fusion power could be one of very few sustainable options to replace fossil fuels as the world's primary energy source. Fusion offers the potential of predictable, safe power with no carbon emissions and fuel sources lasting for millions of years. However, it is notoriously difficult to achieve in a controlled, steady-state fashion. The most promising path is via magnetic confinement in a device called a tokamak. A magnetic confinement fusion (MCF) power plant requires many different science, technology and engineering challenges to be met simultaneously. This requires an integrated approach from the outset; advances are needed in individual areas but these only bring fusion electricity closer if the other challenges are resolved in harmony. The UK Atomic Energy Authority (UKAEA) has developed a wide range of skills to address many of the challenges and hosts the JET device, presently the only MCF facility capable of operating with both the fusion fuels, deuterium and tritium. Recently, several major new UKAEA facilities have been funded and some have started operation, notably a new spherical tokamak (MAST Upgrade), a major robotics facility (RACE), and a materials research facility (MRF). Most recently, work has started on Hydrogen-3 Advanced Technology (H3AT) for tritium technology and a group of Fusion Technology Facilities. This article is part of a discussion meeting issue 'Fusion energy using tokamaks: can development be accelerated?'
引用
收藏
页数:14
相关论文
共 51 条
[1]  
Agudo V, 2017, INT S FUS NUCL TECHN, P3
[2]  
[Anonymous], P 42 EPS C PLASM PHY
[3]   First dust study in JET with the ITER-like wall: sampling, analysis and classification [J].
Baron-Wiechec, A. ;
Fortuna-Zalesna, E. ;
Grzonka, J. ;
Rubel, M. ;
Widdowson, A. ;
Ayres, C. ;
Coad, J. P. ;
Hardie, C. ;
Heinola, K. ;
Matthews, G. F. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. .
NUCLEAR FUSION, 2015, 55 (11)
[4]   Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components [J].
Barrett, Thomas R. ;
Ellwood, G. ;
Perez, G. ;
Kovari, M. ;
Fursdon, M. ;
Domptail, F. ;
Kirk, S. ;
McIntosh, S. C. ;
Roberts, S. ;
Zheng, S. ;
Boccaccini, L. V. ;
You, J. -H. ;
Bachmann, C. ;
Reiser, J. ;
Rieth, M. ;
Visca, E. ;
Mazzone, G. ;
Arbeiter, F. ;
Domalapally, P. K. .
FUSION ENGINEERING AND DESIGN, 2016, 109 :917-924
[5]   Possible techniques for the detritiation of first wall materials from fusion machines [J].
Bekris, N ;
Caldwell-Nichols, C ;
Doerr, L ;
Glugla, M ;
Penzhorn, RD ;
Ziegler, H .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (2 SUPPL.) :1649-1654
[6]   Global and pedestal confinement in JET with a Be/W metallic wall [J].
Beurskens, M. N. A. ;
Frassinetti, L. ;
Challis, C. ;
Giroud, C. ;
Saarelma, S. ;
Alper, B. ;
Angioni, C. ;
Bilkova, P. ;
Bourdelle, C. ;
Brezinsek, S. ;
Buratti, P. ;
Calabro, G. ;
Eich, T. ;
Flanagan, J. ;
Giovannozzi, E. ;
Groth, M. ;
Hobirk, J. ;
Joffrin, E. ;
Leyland, M. J. ;
Lomas, P. ;
de la Luna, E. ;
Kempenaars, M. ;
Maddison, G. ;
Maggi, C. ;
Mantica, P. ;
Maslov, M. ;
Matthews, G. ;
Mayoral, M-L ;
Neu, R. ;
Nunes, I. ;
Osborne, T. ;
Rimini, F. ;
Scannell, R. ;
Solano, E. R. ;
Snyder, P. B. ;
Voitsekhovitch, I. ;
de Vries, Peter .
NUCLEAR FUSION, 2014, 54 (04)
[7]   Fuel retention studies with the ITER-Like Wall in JET [J].
Brezinsek, S. ;
Loarer, T. ;
Philipps, V. ;
Esser, H. G. ;
Gruenhagen, S. ;
Smith, R. ;
Felton, R. ;
Banks, J. ;
Belo, P. ;
Boboc, A. ;
Bucalossi, J. ;
Clever, M. ;
Coenen, J. W. ;
Coffey, I. ;
Devaux, S. ;
Douai, D. ;
Freisinger, M. ;
Frigione, D. ;
Groth, M. ;
Huber, A. ;
Hobirk, J. ;
Jachmich, S. ;
Knipe, S. ;
Krieger, K. ;
Kruezi, U. ;
Marsen, S. ;
Matthews, G. F. ;
Meigs, A. G. ;
Nave, F. ;
Nunes, I. ;
Neu, R. ;
Roth, J. ;
Stamp, M. F. ;
Vartanian, S. ;
Samm, U. .
NUCLEAR FUSION, 2013, 53 (08)
[8]   Waste from fusion reactor: A comparison with other energy producing systems [J].
Broden, K ;
Edwards, R ;
Lindberg, M ;
Rocco, P ;
Zucchetti, M .
FUSION ENGINEERING AND DESIGN, 1998, 42 :1-6
[9]   Remote-handling challenges in fusion research and beyond [J].
Buckingham, Rob ;
Loving, Antony .
NATURE PHYSICS, 2016, 12 (05) :391-393
[10]   Improved confinement in JET high β plasmas with an ITER-like wall [J].
Challis, C. D. ;
Garcia, J. ;
Beurskens, M. ;
Buratti, P. ;
Delabie, E. ;
Drewelow, P. ;
Frassinetti, L. ;
Giroud, C. ;
Hawkes, N. ;
Hobirk, J. ;
Joffrin, E. ;
Keeling, D. ;
King, D. B. ;
Maggi, C. F. ;
Mailloux, J. ;
Marchetto, C. ;
McDonald, D. ;
Nunes, I. ;
Pucella, G. ;
Saarelma, S. ;
Simpson, J. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. .
NUCLEAR FUSION, 2015, 55 (05)