High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

被引:136
作者
Hendriks, Koen H. [1 ,4 ]
Robinson, Sophia G. [2 ,4 ]
Braten, Miles N. [3 ,4 ]
Sevov, Christo S. [1 ,4 ]
Helms, Brett A. [3 ,4 ]
Sigman, Matthew S. [2 ,4 ]
Minteer, Shelley D. [2 ,4 ]
Sanford, Melanie S. [1 ,4 ]
机构
[1] Univ Michigan, Dept Chem, 930 North Univ Ave, Ann Arbor, MI 48109 USA
[2] Univ Utah, Dept Chem, 315 South 1400 East, Salt Lake City, UT 84112 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] JCESR, 9700 S Cass Ave, Argonne, IL 60439 USA
关键词
ENERGY-STORAGE; ACTIVE POLYMERS; ELECTROLYTES; PERSPECTIVE; IMPACT; SAFE;
D O I
10.1021/acscentsci.7b00544
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electro-chemical flow cell. To avoid battery self-discharge, the anolyte and catholyte solutions must be separated by a membrane in the flow cell. This membrane prevents crossover of the redox active molecules, while simultaneously allowing facile transport of charge-balancing ions. A key unmet challenge for the field is the design of redox-active molecule/membrane pairs that enable effective electrolyte separation while maintaining optimal battery properties. Herein, we demonstrate the development of oligomeric catholytes based on tris(dialkylamino) cyclopropenium (CP) salts that are specifically tailored for pairing with size-exclusion membranes composed of polymers of intrinsic microporosity (PIMs). Systematic studies were conducted to evaluate the impact of oligomer size/structure on properties that are crucial for flow battery performance, including cycling stability, charge capacity, solubility, electron transfer kinetics, and crossover rates. These studies have led to the identification of a CP-derived tetramer in which these properties are all comparable, or significantly improved, relative to the monomeric counterpart. Finally, a proof-of-concept flow battery is demonstrated by pairing this tetrameric catholyte with a PIM membrane. After 6 days of cycling, no crossover is detected, demonstrating the promise of this approach. These studies provide a template for the future design of other redox-active oligomers for this application.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 35 条
[1]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[2]   Redox Active Polymers as Soluble Nanomaterials for Energy Storage [J].
Burgess, Mark ;
Moore, Jeffrey S. ;
Rodriguez-Lopez, Joaquin .
ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (11) :2649-2657
[3]   Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers [J].
Burgess, Mark ;
Chenard, Etienne ;
Hernandez-Burgos, Kenneth ;
Nagarjuna, Gavvalapalli ;
Assary, Rajeev S. ;
Hui, Jingshu ;
Moore, Jeffrey S. ;
Rodriguez-Lopez, Joaquin .
CHEMISTRY OF MATERIALS, 2016, 28 (20) :7362-7374
[4]  
Darling R. M., ENERGY ENV
[5]   A high-performance all-metallocene-based, non-aqueous redox flow battery [J].
Ding, Yu ;
Zhao, Yu ;
Li, Yutao ;
Goodenough, John B. ;
Yu, Guihua .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (02) :491-497
[6]   Cost-driven materials selection criteria for redox flow battery electrolytes [J].
Dmello, Rylan ;
Milshtein, Jarrod D. ;
Brushett, Fikile R. ;
Smith, Kyle C. .
JOURNAL OF POWER SOURCES, 2016, 330 :261-272
[7]   Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries [J].
Doris, Sean E. ;
Ward, Ashleigh L. ;
Baskin, Artem ;
Frischmann, Peter D. ;
Gavvalapalli, Nagarjuna ;
Chenard, Etienne ;
Sevov, Christo S. ;
Prendergast, David ;
Moore, Jeffrey S. ;
Helms, Brett A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (06) :1595-1599
[8]  
Eberson L.:., 1982, Electron-Transfer Reactions in Organic Chemistry, V18
[9]   Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries [J].
Hendriks, Koen H. ;
Sevov, Christo S. ;
Cook, Monique E. ;
Sanford, Melanie S. .
ACS ENERGY LETTERS, 2017, 2 (10) :2430-2435
[10]   Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage [J].
Hu, Bo ;
DeBruler, Camden ;
Rhodes, Zayn ;
Liu, T. Leo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (03) :1207-1214