Characterizing individual SnO2 nanobelt field-effect transistors and their intrinsic responses to hydrogen and ambient gases

被引:42
作者
Cheng, Yi [1 ,2 ]
Yang, Rusen [3 ]
Zheng, Jian-Ping [4 ,5 ]
Wang, Zhong Lin [3 ]
Xiong, Peng [1 ,2 ]
机构
[1] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[2] Florida State Univ, Integrat NanoSci Inst, Tallahassee, FL 32306 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Florida A&M Univ, Coll Engn, Dept Elect & Comp Engn, Tallahassee, FL 32310 USA
[5] Florida State Univ, Tallahassee, FL 32310 USA
关键词
Oxides; Nanostructures; Chemisorption; Electrical properties; Surface properties; ROOM-TEMPERATURE; CONDUCTION MODEL; OXIDE NANOWIRES; ZNO NANORODS; SENSORS; GROWTH; NANORIBBONS; CATALYSIS; FILMS;
D O I
10.1016/j.matchemphys.2012.09.037
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The intrinsic electrical properties of individual single-crystalline tin dioxide nanobelts, synthesized via catalyst-free physical vapor deposition, were studied and correlated to the surface oxygen deficiency with the presence of various ambient gases, especially hydrogen. Four-terminal field-effect transistor (FET) devices based on individual SnO2 nanobelts were fabricated with SiO2/Si as back gate and RuO2/Au as contacts. Four-probe I-V measurements verify channel-limited transistor characteristics and ensure that the hydrogen gas sensing reflect electrical modification of the nanobelt channel. The demonstrated results of the intrinsic SnO2 nanobelt based hydrogen sensor operating at room temperature provide useful information on the synthesis of room temperature chemo-resistive gas sensors with good sensitivity and stability. To evaluate the impact of surface gas composition on the electrical properties of SnO2 nanobelts, their temperature-dependent resistivity (rho), effective carrier mobility (mu(eff)) and effective carrier concentration (n(e)) were determined under different oxygen concentrations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:372 / 380
页数:9
相关论文
共 52 条
[1]   Modeling and simulation of single nanobelt SnO2 gas sensors with FET structure [J].
Andrei, P. ;
Fields, L. L. ;
Zheng, J. P. ;
Cheng, Y. ;
Xiong, P. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 128 (01) :226-234
[2]  
[Anonymous], 1993, CONTACTS SEMICONDUCT
[3]   Field-effect transistors based on single semiconducting oxide nanobelts [J].
Arnold, MS ;
Avouris, P ;
Pan, ZW ;
Wang, ZL .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :659-663
[4]   SnO2 nanowire bio-transistor for electrical DNA sensing [J].
Baratto, C. ;
Todros, S. ;
Comini, E. ;
Faglia, G. ;
Ferroni, M. ;
Sberveglieri, G. ;
Andreano, G. ;
Cellai, L. ;
Flamini, A. ;
Marrazza, G. ;
Nannini, A. ;
Pennelli, G. ;
Piotto, M. .
2007 IEEE SENSORS, VOLS 1-3, 2007, :1132-1135
[5]   Conduction model of metal oxide gas sensors [J].
Barsan, N ;
Weimar, U .
JOURNAL OF ELECTROCERAMICS, 2001, 7 (03) :143-167
[6]  
Brillson LJ, 1992, HDB SEMICONDUCTORS, V1, P281
[7]   Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors [J].
Cheng, Yi ;
Xiong, P. ;
Fields, Lenwood ;
Zheng, J. P. ;
Yang, R. S. ;
Wang, Z. L. .
APPLIED PHYSICS LETTERS, 2006, 89 (09)
[8]   Functionalized SnO2 nanobelt field-effect transistor sensors for label-free detection of cardiac troponin [J].
Cheng, Yi ;
Chen, Kan-Sheng ;
Meyer, Nancy L. ;
Yuan, Jing ;
Hirst, Linda S. ;
Chase, P. Bryant ;
Xiong, Peng .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (11) :4538-4544
[9]   Mechanism and Optimization of pH Sensing Using SnO2 Nanobelt Field Effect Transistors [J].
Cheng, Yi ;
Xiong, P. ;
Yun, C. Steven ;
Strouse, G. F. ;
Zheng, J. P. ;
Yang, R. S. ;
Wang, Z. L. .
NANO LETTERS, 2008, 8 (12) :4179-4184
[10]  
Comini E, 2010, MATER TODAY, V13, P28