On the selection of m for Fuzzy c-Means

被引:0
作者
Torra, Vicenc [1 ]
机构
[1] Univ Skovde, Skovde, Sweden
来源
PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY | 2015年 / 89卷
关键词
Fuzzy clustering; Fuzzy c-means; parameters of FCM; m;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy c-means is a well known fuzzy clustering algorithm. It is an unsupervised clustering algorithm that permits us to build a fuzzy partition from data. The algorithm depends on a parameter m which corresponds to the degree of fuzziness of the solution. Large values of m will blur the classes and all elements tend to belong to all clusters. The solutions of the optimization problem depend on the parameter m. That is, different selections of m will typically lead to different partitions. In this paper we study and compare the effect of the selection of m obtained from the fuzzy c-means.
引用
收藏
页码:1571 / 1577
页数:7
相关论文
共 11 条
  • [1] [Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms
  • [2] Linear fuzzy clusterinor with selection of variables using graded possibilistic approach
    Honda, Katsuhiro
    Ichihashi, Hidetomo
    Masulli, Francesco
    Rovetta, Stefano
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (05) : 878 - 889
  • [3] Hoppner F., 1999, FUZZY CLUSTER ANAL
  • [4] MIYAMOTO S, 1999, INTRO FUZZY CLUSTERI
  • [5] Miyamoto S., 1997, P 7 INT FUZZ SYST AS, V2, P86
  • [6] Miyamoto S., 2000, P 16 FUZZ SYST S SEP, P537
  • [7] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [8] Szilágyi L, 2014, LECT NOTES ARTIF INT, V8825, P158, DOI 10.1007/978-3-319-12054-6_14
  • [9] TORRA V, 2004, LNCS, V3050, P175
  • [10] Torra V., 2006, LNCS