Optimal sampling for the estimation of dispersion parameters in soil columns using an Iterative Genetic Algorithm

被引:18
作者
Catania, Federico [1 ]
Paladino, Ombretta [1 ]
机构
[1] Univ Genoa, DIST, CIMA Ctr Ric Interuniv Monitoraggio Ambientale, I-17100 Savona, Italy
关键词
genetic algorithm; D-optimality; optimal experimental design; parameter estimation; solute transport; groundwater; EXPERIMENTAL-DESIGN; OUTFLOW EXPERIMENTS; POROUS-MEDIA; GROUNDWATER; TRANSPORT; MODEL; IDENTIFICATION;
D O I
10.1016/j.envsoft.2008.05.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In groundwater modelling, an appropriate soil characterization is strongly recommended to evaluate both the fate and transport of solutes and the performance of groundwater remediation criterion, though parameter estimation techniques are often blocked by several inherent difficulties (i.e. ill-posedness and insufficient quantity and quality of observation data). In this paper, an iterative decision model is built and tested in order to locate the position of a fixed number of sample points in a soil column experiment to obtain optimal parameter estimation (OPE), minimizing the parametric uncertainty and the overall cost of the experimental campaign. Starting from an initial guess of chosen points (given by a fraction of the total disposable ones), an Iterative Genetic Algorithm (ICA) is capable of finding the best points able to minimize a first-order approximation of the parameter covariance matrix. The parameter estimates are updated under a Bayesian scheme, using exclusively the observations collected after the earlier run of minimization, and the iterative process stops when the imposed convergence criterion based on the parameter values is reached. An important contribution of this work is the development of an effective direct search algorithm (IGA) for solving the sampling network optimization problem at a laboratory scale. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 123
页数:9
相关论文
共 31 条
  • [1] Optimal experimental design for parameter estimation in column outflow experiments -: art. no. 1186
    Altmann-Dieses, AE
    Schlöder, JP
    Bock, HG
    Richter, O
    [J]. WATER RESOURCES RESEARCH, 2002, 38 (10) : 4 - 1
  • [2] [Anonymous], 1948, Tech. J., V27, P379
  • [3] ARAL MM, 1996, P NATO ADV STUD I AD
  • [4] Bard Y, 1974, Nonlinear Parameter Estimation
  • [5] Assessment of quantitative imaging of contaminant distributions in porous media
    Catania, F.
    Massabo, M.
    Valle, M.
    Bracco, G.
    Paladino, O.
    [J]. EXPERIMENTS IN FLUIDS, 2008, 44 (01) : 167 - 177
  • [6] Estimation of transport and kinetic parameters using analytical solutions of the 2D advection-dispersion-reaction model
    Catania, F
    Massabò, M
    Paladino, O
    [J]. ENVIRONMETRICS, 2006, 17 (02) : 199 - 216
  • [7] Cleary R. W., 1978, 78WR15 PRINC U
  • [8] SAMPLING NETWORK DESIGN FOR TRANSPORT PARAMETER-IDENTIFICATION
    CLEVELAND, TG
    YEH, WWG
    [J]. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT-ASCE, 1990, 116 (06): : 764 - 783
  • [9] Application of genetic algorithms to the robust estimation of soil organic and mineral fraction densities
    Crowe, A. M.
    McClean, C. J.
    Cresser, M. S.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (10) : 1503 - 1507
  • [10] A macroscopic collisional model for debris-flows simulation
    D'Ambrosio, Donato
    Iovine, Giulio
    Spataro, William
    Miyarrioto, Hideaki
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (10) : 1417 - 1436