Performance investigation of a rectangular spiral flow PV/T collector with a novel form-stable composite material

被引:74
作者
Das, Dudul [1 ]
Bordoloi, Urbashi [2 ]
Kamble, Akash Dilip [1 ]
Muigai, Harrison Hihu [1 ]
Pai, Ranjith Krishna [3 ]
Kalita, Pankaj [1 ]
机构
[1] Indian Inst Technol Guwahati, Ctr Energy, Gauhati 781039, Assam, India
[2] Indian Inst Technol Guwahati, Ctr Rural Technol, Gauhati 781039, Assam, India
[3] Govt India, Technol Mission Div, Dept Sci & Technol DST, New Delhi 110016, India
关键词
Rectangular spiral absorber; PCM-biochar composite; Form stability; PV/T; Electrical output; Exergy efficiency;
D O I
10.1016/j.applthermaleng.2020.116035
中图分类号
O414.1 [热力学];
学科分类号
摘要
The electrical output of the Photovoltaic (PV) cells decreases with the increase in the operating temperature. To address the issue of electrical power drop in PV, a new hybrid collector called photovoltaic-thermal (PV/T) module has been proposed by the researchers. PV/T combines a PV and thermal absorber; it helps in cooling of PV and to harness the waste heat from PV for utilizing in low-temperature applications. However, the cooling uniformity and thermal efficiency remain to be major challenges for the broader applicability of PV/T. In this work, a novel rectangular spiral tube only absorber is developed with a transparent multi-crystalline PV module with absorber tubes directly glued to the PV backside. A novel form-stable composite developed by simple impregnation method using PCM (OM35) and biochar derived from water hyacinth. This novel composite is embedded in the enclosure formed by the PV and back cover to improve cooling uniformity and better absorption of incoming radiation due to the blackish appearance of the composite. In the composite, 5% by wt aluminium metal powder is added. The thermal conductivity of the composite is found to improve by 1.66 times than that of pure PCM, while aluminium metal powder is added. The heat of fusion is calculated to be 78 J/g. The developed PV/T system has been experimentally evaluated under outdoor conditions. The average electrical, thermal, energy and exergy efficiency of the PV/T system with novel form-stable thermal energy storage material is reported to be 13 +/- 5.04%, 66.6 +/- 5.48%, 79.6 +/- 5.53%, and 15 +/- 5.58% respectively, whereas the average electrical efficiency PV during the experiment found to be 10.7 +/- 5.04%. The electrical efficiency of the PV module used is 14.64% under Standard Test Conditions. There is an improvement of 18.4% in electrical output as compared to PV with this novel arrangement.
引用
收藏
页数:15
相关论文
共 9 条
  • [1] Techno-economic and environmental evaluation of passive cooled photovoltaic systems in Mediterranean climate conditions
    Cabo, Filip Grubisic
    Nizetic, Sandro
    Giama, Effrosyni
    Papadopoulos, Agis
    [J]. APPLIED THERMAL ENGINEERING, 2020, 169 (169)
  • [2] CEL, 2020, MOD
  • [3] A novel form stable PCM based bio composite material for solar thermal energy storage applications
    Das, Dudul
    Bordoloi, Urbashi
    Muigai, Harrison Hihu
    Kalita, Pankaj
    [J]. JOURNAL OF ENERGY STORAGE, 2020, 30
  • [4] Flat plate hybrid photovoltaic-thermal (PV/T) system: A review on design and development
    Das, Dudul
    Kalita, Pankaj
    Roy, Omkar
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 84 : 111 - 130
  • [5] Energy and Exergy Study of Effective Parameters on Performance of Photovoltaic/Thermal Natural Air Collectors
    Gholampour, M.
    Ameri, M.
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (03):
  • [6] Holman JP, 1994, EXP THERM FLUID SCI, V9, P250, DOI [10.1016/0894-1777(94)90118-X, DOI 10.1016/0894-1777(94)90118-X]
  • [7] Petela R., 1964, J HEAT TRANSFER, V86, P187, DOI [10.1115/1.3687092, DOI 10.1115/1.3687092]
  • [8] Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium
    Rajvikram, M.
    Leoponraj, S.
    Ramkumar, S.
    Akshaya, H.
    Dheeraj, A.
    [J]. SOLAR ENERGY, 2019, 188 : 327 - 338
  • [9] Weitbrecht V., 2003, FLOW DISTRIBUTION SO, V73, P433